MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnei Structured version   Unicode version

Theorem isnei 17159
Description: The predicate " N is a neighborhood of  S." (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
isnei  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Distinct variable groups:    g, J    g, N    S, g    g, X

Proof of Theorem isnei
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4  |-  X  = 
U. J
21neival 17158 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( nei `  J
) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } )
32eleq2d 2502 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) } ) )
4 sseq2 3362 . . . . . . 7  |-  ( v  =  N  ->  (
g  C_  v  <->  g  C_  N ) )
54anbi2d 685 . . . . . 6  |-  ( v  =  N  ->  (
( S  C_  g  /\  g  C_  v )  <-> 
( S  C_  g  /\  g  C_  N ) ) )
65rexbidv 2718 . . . . 5  |-  ( v  =  N  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  v )  <->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
76elrab 3084 . . . 4  |-  ( N  e.  { v  e. 
~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
81topopn 16971 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
9 elpw2g 4355 . . . . . 6  |-  ( X  e.  J  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
108, 9syl 16 . . . . 5  |-  ( J  e.  Top  ->  ( N  e.  ~P X  <->  N 
C_  X ) )
1110anbi1d 686 . . . 4  |-  ( J  e.  Top  ->  (
( N  e.  ~P X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N
) )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
127, 11syl5bb 249 . . 3  |-  ( J  e.  Top  ->  ( N  e.  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1312adantr 452 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  {
v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v ) }  <-> 
( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
143, 13bitrd 245 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   {crab 2701    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   ` cfv 5446   Topctop 16950   neicnei 17153
This theorem is referenced by:  neiint  17160  isneip  17161  neii1  17162  neii2  17164  neiss  17165  neips  17169  opnneissb  17170  opnssneib  17171  ssnei2  17172  innei  17181  neitr  17236  neitx  17631  neifg  26391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-top 16955  df-nei 17154
  Copyright terms: Public domain W3C validator