MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp Unicode version

Theorem isngp 18134
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
Assertion
Ref Expression
isngp  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )

Proof of Theorem isngp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 elin 3371 . . 3  |-  ( G  e.  ( Grp  i^i  MetSp
)  <->  ( G  e. 
Grp  /\  G  e.  MetSp
) )
21anbi1i 676 . 2  |-  ( ( G  e.  ( Grp 
i^i  MetSp )  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
3 fveq2 5541 . . . . . 6  |-  ( g  =  G  ->  ( norm `  g )  =  ( norm `  G
) )
4 isngp.n . . . . . 6  |-  N  =  ( norm `  G
)
53, 4syl6eqr 2346 . . . . 5  |-  ( g  =  G  ->  ( norm `  g )  =  N )
6 fveq2 5541 . . . . . 6  |-  ( g  =  G  ->  ( -g `  g )  =  ( -g `  G
) )
7 isngp.z . . . . . 6  |-  .-  =  ( -g `  G )
86, 7syl6eqr 2346 . . . . 5  |-  ( g  =  G  ->  ( -g `  g )  = 
.-  )
95, 8coeq12d 4864 . . . 4  |-  ( g  =  G  ->  (
( norm `  g )  o.  ( -g `  g
) )  =  ( N  o.  .-  )
)
10 fveq2 5541 . . . . 5  |-  ( g  =  G  ->  ( dist `  g )  =  ( dist `  G
) )
11 isngp.d . . . . 5  |-  D  =  ( dist `  G
)
1210, 11syl6eqr 2346 . . . 4  |-  ( g  =  G  ->  ( dist `  g )  =  D )
139, 12sseq12d 3220 . . 3  |-  ( g  =  G  ->  (
( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g )  <->  ( N  o.  .-  )  C_  D ) )
14 df-ngp 18122 . . 3  |- NrmGrp  =  {
g  e.  ( Grp 
i^i  MetSp )  |  ( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g ) }
1513, 14elrab2 2938 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  ( Grp  i^i  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
16 df-3an 936 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
172, 15, 163bitr4i 268 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    i^i cin 3164    C_ wss 3165    o. ccom 4709   ` cfv 5271   distcds 13233   Grpcgrp 14378   -gcsg 14381   MetSpcmt 17899   normcnm 18115  NrmGrpcngp 18116
This theorem is referenced by:  isngp2  18135  ngpgrp  18137  ngpms  18138  tngngp2  18184  cnngp  18305
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-co 4714  df-iota 5235  df-fv 5279  df-ngp 18122
  Copyright terms: Public domain W3C validator