MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Unicode version

Theorem isngp2 18135
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n  |-  N  =  ( norm `  G
)
isngp.z  |-  .-  =  ( -g `  G )
isngp.d  |-  D  =  ( dist `  G
)
isngp2.x  |-  X  =  ( Base `  G
)
isngp2.e  |-  E  =  ( D  |`  ( X  X.  X ) )
Assertion
Ref Expression
isngp2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3  |-  N  =  ( norm `  G
)
2 isngp.z . . 3  |-  .-  =  ( -g `  G )
3 isngp.d . . 3  |-  D  =  ( dist `  G
)
41, 2, 3isngp 18134 . 2  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D ) )
5 isngp2.e . . . . . . 7  |-  E  =  ( D  |`  ( X  X.  X ) )
6 resss 4995 . . . . . . 7  |-  ( D  |`  ( X  X.  X
) )  C_  D
75, 6eqsstri 3221 . . . . . 6  |-  E  C_  D
8 sseq1 3212 . . . . . 6  |-  ( ( N  o.  .-  )  =  E  ->  ( ( N  o.  .-  )  C_  D  <->  E  C_  D ) )
97, 8mpbiri 224 . . . . 5  |-  ( ( N  o.  .-  )  =  E  ->  ( N  o.  .-  )  C_  D )
10 isngp2.x . . . . . . . . . . . . 13  |-  X  =  ( Base `  G
)
113reseq1i 4967 . . . . . . . . . . . . . 14  |-  ( D  |`  ( X  X.  X
) )  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
125, 11eqtri 2316 . . . . . . . . . . . . 13  |-  E  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
1310, 12msmet 18019 . . . . . . . . . . . 12  |-  ( G  e.  MetSp  ->  E  e.  ( Met `  X ) )
141, 10, 3, 5nmf2 18131 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  E  e.  ( Met `  X ) )  ->  N : X --> RR )
1513, 14sylan2 460 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  ->  N : X --> RR )
1615adantr 451 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  N : X --> RR )
1710, 2grpsubf 14561 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .-  :
( X  X.  X
) --> X )
1817ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  .-  :
( X  X.  X
) --> X )
19 fco 5414 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  .-  : ( X  X.  X ) --> X )  ->  ( N  o.  .-  ) : ( X  X.  X ) --> RR )
2016, 18, 19syl2anc 642 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> RR )
21 fdm 5409 . . . . . . . . 9  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2220, 21syl 15 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  dom  ( N  o.  .-  )  =  ( X  X.  X ) )
2322reseq2d 4971 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( E  |`  ( X  X.  X
) ) )
2410, 12msf 18020 . . . . . . . . . 10  |-  ( G  e.  MetSp  ->  E :
( X  X.  X
) --> RR )
2524ad2antlr 707 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  E : ( X  X.  X ) --> RR )
26 ffun 5407 . . . . . . . . 9  |-  ( E : ( X  X.  X ) --> RR  ->  Fun 
E )
2725, 26syl 15 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  Fun  E )
28 simpr 447 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  D )
29 ssv 3211 . . . . . . . . . . . 12  |-  RR  C_  _V
30 fss 5413 . . . . . . . . . . . 12  |-  ( ( ( N  o.  .-  ) : ( X  X.  X ) --> RR  /\  RR  C_  _V )  -> 
( N  o.  .-  ) : ( X  X.  X ) --> _V )
3120, 29, 30sylancl 643 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  ) : ( X  X.  X
) --> _V )
32 fssxp 5416 . . . . . . . . . . 11  |-  ( ( N  o.  .-  ) : ( X  X.  X ) --> _V  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3331, 32syl 15 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( ( X  X.  X )  X.  _V ) )
3428, 33ssind 3406 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  ( D  i^i  (
( X  X.  X
)  X.  _V )
) )
35 df-res 4717 . . . . . . . . . 10  |-  ( D  |`  ( X  X.  X
) )  =  ( D  i^i  ( ( X  X.  X )  X.  _V ) )
365, 35eqtri 2316 . . . . . . . . 9  |-  E  =  ( D  i^i  (
( X  X.  X
)  X.  _V )
)
3734, 36syl6sseqr 3238 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  C_  E )
38 funssres 5310 . . . . . . . 8  |-  ( ( Fun  E  /\  ( N  o.  .-  )  C_  E )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
3927, 37, 38syl2anc 642 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  dom  ( N  o.  .-  ) )  =  ( N  o.  .-  ) )
40 ffn 5405 . . . . . . . 8  |-  ( E : ( X  X.  X ) --> RR  ->  E  Fn  ( X  X.  X ) )
41 fnresdm 5369 . . . . . . . 8  |-  ( E  Fn  ( X  X.  X )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4225, 40, 413syl 18 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( E  |`  ( X  X.  X ) )  =  E )
4323, 39, 423eqtr3d 2336 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D )  ->  ( N  o.  .-  )  =  E )
4443ex 423 . . . . 5  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  C_  D  ->  ( N  o.  .-  )  =  E ) )
459, 44impbid2 195 . . . 4  |-  ( ( G  e.  Grp  /\  G  e.  MetSp )  -> 
( ( N  o.  .-  )  =  E  <->  ( N  o.  .-  )  C_  D
) )
4645pm5.32i 618 . . 3  |-  ( ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
47 df-3an 936 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  =  E ) )
48 df-3an 936 . . 3  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  C_  D )  <->  ( ( G  e.  Grp  /\  G  e.  MetSp )  /\  ( N  o.  .-  )  C_  D ) )
4946, 47, 483bitr4i 268 . 2  |-  ( ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E )  <->  ( G  e.  Grp  /\  G  e. 
MetSp  /\  ( N  o.  .-  )  C_  D )
)
504, 49bitr4i 243 1  |-  ( G  e. NrmGrp 
<->  ( G  e.  Grp  /\  G  e.  MetSp  /\  ( N  o.  .-  )  =  E ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    i^i cin 3164    C_ wss 3165    X. cxp 4703   dom cdm 4705    |` cres 4707    o. ccom 4709   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271   RRcr 8752   Basecbs 13164   distcds 13233   Grpcgrp 14378   -gcsg 14381   Metcme 16386   MetSpcmt 17899   normcnm 18115  NrmGrpcngp 18116
This theorem is referenced by:  isngp3  18136  ngpds  18141  ngppropd  18169
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-topgen 13360  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-xms 17901  df-ms 17902  df-nm 18121  df-ngp 18122
  Copyright terms: Public domain W3C validator