MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Unicode version

Theorem isnrm2 17186
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Distinct variable group:    c, d, o, J

Proof of Theorem isnrm2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nrmtop 17164 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
2 nrmsep2 17184 . . . . . 6  |-  ( ( J  e.  Nrm  /\  ( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J )  /\  ( c  i^i  d
)  =  (/) ) )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )
323exp2 1169 . . . . 5  |-  ( J  e.  Nrm  ->  (
c  e.  ( Clsd `  J )  ->  (
d  e.  ( Clsd `  J )  ->  (
( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) ) ) ) )
43imp3a 420 . . . 4  |-  ( J  e.  Nrm  ->  (
( c  e.  (
Clsd `  J )  /\  d  e.  ( Clsd `  J ) )  ->  ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
54ralrimivv 2710 . . 3  |-  ( J  e.  Nrm  ->  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )
61, 5jca 518 . 2  |-  ( J  e.  Nrm  ->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
7 simpl 443 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Top )
8 eqid 2358 . . . . . . . . . . 11  |-  U. J  =  U. J
98opncld 16870 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
109adantr 451 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( U. J  \  x )  e.  ( Clsd `  J
) )
11 ineq2 3440 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
c  i^i  d )  =  ( c  i^i  ( U. J  \  x ) ) )
1211eqeq1d 2366 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  (
( c  i^i  d
)  =  (/)  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) ) )
13 ineq2 3440 . . . . . . . . . . . . . 14  |-  ( d  =  ( U. J  \  x )  ->  (
( ( cls `  J
) `  o )  i^i  d )  =  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) ) )
1413eqeq1d 2366 . . . . . . . . . . . . 13  |-  ( d  =  ( U. J  \  x )  ->  (
( ( ( cls `  J ) `  o
)  i^i  d )  =  (/)  <->  ( ( ( cls `  J ) `
 o )  i^i  ( U. J  \  x ) )  =  (/) ) )
1514anbi2d 684 . . . . . . . . . . . 12  |-  ( d  =  ( U. J  \  x )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1615rexbidv 2640 . . . . . . . . . . 11  |-  ( d  =  ( U. J  \  x )  ->  ( E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) )
1712, 16imbi12d 311 . . . . . . . . . 10  |-  ( d  =  ( U. J  \  x )  ->  (
( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  <->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1817rspcv 2956 . . . . . . . . 9  |-  ( ( U. J  \  x
)  e.  ( Clsd `  J )  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d
)  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
1910, 18syl 15 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) ) ) )
20 inssdif0 3597 . . . . . . . . . 10  |-  ( ( c  i^i  U. J
)  C_  x  <->  ( c  i^i  ( U. J  \  x ) )  =  (/) )
218cldss 16866 . . . . . . . . . . . . 13  |-  ( c  e.  ( Clsd `  J
)  ->  c  C_  U. J )
2221adantl 452 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  c  C_  U. J )
23 df-ss 3242 . . . . . . . . . . . 12  |-  ( c 
C_  U. J  <->  ( c  i^i  U. J )  =  c )
2422, 23sylib 188 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( c  i^i  U. J )  =  c )
2524sseq1d 3281 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  U. J ) 
C_  x  <->  c  C_  x ) )
2620, 25syl5bbr 250 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
c  i^i  ( U. J  \  x ) )  =  (/)  <->  c  C_  x
) )
27 inssdif0 3597 . . . . . . . . . . . 12  |-  ( ( ( ( cls `  J
) `  o )  i^i  U. J )  C_  x 
<->  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )
28 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  J  e.  Top )
29 elssuni 3934 . . . . . . . . . . . . . . 15  |-  ( o  e.  J  ->  o  C_ 
U. J )
308clsss3 16896 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  o  C_  U. J )  ->  ( ( cls `  J ) `  o
)  C_  U. J )
3128, 29, 30syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( cls `  J
) `  o )  C_ 
U. J )
32 df-ss 3242 . . . . . . . . . . . . . 14  |-  ( ( ( cls `  J
) `  o )  C_ 
U. J  <->  ( (
( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3331, 32sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( cls `  J
) `  o )  i^i  U. J )  =  ( ( cls `  J
) `  o )
)
3433sseq1d 3281 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  U. J ) 
C_  x  <->  ( ( cls `  J ) `  o )  C_  x
) )
3527, 34syl5bbr 250 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/)  <->  ( ( cls `  J ) `  o
)  C_  x )
)
3635anbi2d 684 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  x  e.  J )  /\  c  e.  ( Clsd `  J
) )  /\  o  e.  J )  ->  (
( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3736rexbidva 2636 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( E. o  e.  J  (
c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) )  <->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
3826, 37imbi12d 311 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( (
( c  i^i  ( U. J  \  x
) )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  ( U. J  \  x ) )  =  (/) ) )  <->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
3919, 38sylibd 205 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  x  e.  J )  /\  c  e.  (
Clsd `  J )
)  ->  ( A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  (
c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
4039ralimdva 2697 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  ( Clsd `  J ) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) ) )
41 elin 3434 . . . . . . . . . 10  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  e.  ~P x ) )
42 vex 2867 . . . . . . . . . . . 12  |-  c  e. 
_V
4342elpw 3707 . . . . . . . . . . 11  |-  ( c  e.  ~P x  <->  c  C_  x )
4443anbi2i 675 . . . . . . . . . 10  |-  ( ( c  e.  ( Clsd `  J )  /\  c  e.  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4541, 44bitri 240 . . . . . . . . 9  |-  ( c  e.  ( ( Clsd `  J )  i^i  ~P x )  <->  ( c  e.  ( Clsd `  J
)  /\  c  C_  x ) )
4645imbi1i 315 . . . . . . . 8  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( (
c  e.  ( Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) )
47 impexp 433 . . . . . . . 8  |-  ( ( ( c  e.  (
Clsd `  J )  /\  c  C_  x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4846, 47bitri 240 . . . . . . 7  |-  ( ( c  e.  ( (
Clsd `  J )  i^i  ~P x )  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )  <->  ( c  e.  ( Clsd `  J
)  ->  ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `
 o )  C_  x ) ) ) )
4948ralbii2 2647 . . . . . 6  |-  ( A. c  e.  ( ( Clsd `  J )  i^i 
~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x )  <->  A. c  e.  ( Clsd `  J
) ( c  C_  x  ->  E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
5040, 49syl6ibr 218 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) )  ->  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) ) )
5150ralrimdva 2709 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J ) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J
) `  o )  i^i  d )  =  (/) ) )  ->  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
5251imp 418 . . 3  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  A. x  e.  J  A. c  e.  (
( Clsd `  J )  i^i  ~P x ) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J
) `  o )  C_  x ) )
53 isnrm 17163 . . 3  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. c  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. o  e.  J  ( c  C_  o  /\  ( ( cls `  J ) `  o
)  C_  x )
) )
547, 52, 53sylanbrc 645 . 2  |-  ( ( J  e.  Top  /\  A. c  e.  ( Clsd `  J ) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) )  ->  J  e.  Nrm )
556, 54impbii 180 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. c  e.  ( Clsd `  J
) A. d  e.  ( Clsd `  J
) ( ( c  i^i  d )  =  (/)  ->  E. o  e.  J  ( c  C_  o  /\  ( ( ( cls `  J ) `  o
)  i^i  d )  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620    \ cdif 3225    i^i cin 3227    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   U.cuni 3906   ` cfv 5334   Topctop 16731   Clsdccld 16853   clsccl 16855   Nrmcnrm 17138
This theorem is referenced by:  isnrm3  17187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-top 16736  df-cld 16856  df-cls 16858  df-nrm 17145
  Copyright terms: Public domain W3C validator