MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Unicode version

Theorem isnsg3 14937
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1  |-  X  =  ( Base `  G
)
isnsg3.2  |-  .+  =  ( +g  `  G )
isnsg3.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
isnsg3  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
Distinct variable groups:    x, y,  .-    x, G, y    x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 14935 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 isnsg3.1 . . . . . 6  |-  X  =  ( Base `  G
)
3 isnsg3.2 . . . . . 6  |-  .+  =  ( +g  `  G )
4 isnsg3.3 . . . . . 6  |-  .-  =  ( -g `  G )
52, 3, 4nsgconj 14936 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  x  e.  X  /\  y  e.  S
)  ->  ( (
x  .+  y )  .-  x )  e.  S
)
653expb 1154 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( ( x  .+  y )  .-  x
)  e.  S )
76ralrimivva 2766 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  A. x  e.  X  A. y  e.  S  ( (
x  .+  y )  .-  x )  e.  S
)
81, 7jca 519 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
9 simpl 444 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  S  e.  (SubGrp `  G )
)
10 subgrcl 14912 . . . . . . . . . . . 12  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1110ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  G  e.  Grp )
12 simprll 739 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  z  e.  X )
13 eqid 2412 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
14 eqid 2412 . . . . . . . . . . . 12  |-  ( inv g `  G )  =  ( inv g `  G )
152, 3, 13, 14grplinv 14814 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( inv g `  G ) `
 z )  .+  z )  =  ( 0g `  G ) )
1611, 12, 15syl2anc 643 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( inv g `  G ) `  z
)  .+  z )  =  ( 0g `  G ) )
1716oveq1d 6063 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( inv g `  G ) `
 z )  .+  z )  .+  w
)  =  ( ( 0g `  G ) 
.+  w ) )
182, 14grpinvcl 14813 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( inv g `  G ) `  z
)  e.  X )
1911, 12, 18syl2anc 643 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( inv g `  G ) `  z
)  e.  X )
20 simprlr 740 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  w  e.  X )
212, 3grpass 14782 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( inv g `  G ) `
 z )  e.  X  /\  z  e.  X  /\  w  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  z )  .+  z )  .+  w
)  =  ( ( ( inv g `  G ) `  z
)  .+  ( z  .+  w ) ) )
2211, 19, 12, 20, 21syl13anc 1186 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( inv g `  G ) `
 z )  .+  z )  .+  w
)  =  ( ( ( inv g `  G ) `  z
)  .+  ( z  .+  w ) ) )
232, 3, 13grplid 14798 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  w  e.  X )  ->  ( ( 0g `  G )  .+  w
)  =  w )
2411, 20, 23syl2anc 643 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( 0g `  G
)  .+  w )  =  w )
2517, 22, 243eqtr3d 2452 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( inv g `  G ) `  z
)  .+  ( z  .+  w ) )  =  w )
2625oveq1d 6063 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) )  =  ( w  .-  ( ( inv g `  G
) `  z )
) )
272, 3, 4, 14, 11, 20, 12grpsubinv 14827 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
w  .-  ( ( inv g `  G ) `
 z ) )  =  ( w  .+  z ) )
2826, 27eqtrd 2444 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) )  =  ( w  .+  z ) )
29 simprr 734 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
z  .+  w )  e.  S )
30 simplr 732 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  A. x  e.  X  A. y  e.  S  ( (
x  .+  y )  .-  x )  e.  S
)
31 oveq1 6055 . . . . . . . . . 10  |-  ( x  =  ( ( inv g `  G ) `
 z )  -> 
( x  .+  y
)  =  ( ( ( inv g `  G ) `  z
)  .+  y )
)
32 id 20 . . . . . . . . . 10  |-  ( x  =  ( ( inv g `  G ) `
 z )  ->  x  =  ( ( inv g `  G ) `
 z ) )
3331, 32oveq12d 6066 . . . . . . . . 9  |-  ( x  =  ( ( inv g `  G ) `
 z )  -> 
( ( x  .+  y )  .-  x
)  =  ( ( ( ( inv g `  G ) `  z
)  .+  y )  .-  ( ( inv g `  G ) `  z
) ) )
3433eleq1d 2478 . . . . . . . 8  |-  ( x  =  ( ( inv g `  G ) `
 z )  -> 
( ( ( x 
.+  y )  .-  x )  e.  S  <->  ( ( ( ( inv g `  G ) `
 z )  .+  y )  .-  (
( inv g `  G ) `  z
) )  e.  S
) )
35 oveq2 6056 . . . . . . . . . 10  |-  ( y  =  ( z  .+  w )  ->  (
( ( inv g `  G ) `  z
)  .+  y )  =  ( ( ( inv g `  G
) `  z )  .+  ( z  .+  w
) ) )
3635oveq1d 6063 . . . . . . . . 9  |-  ( y  =  ( z  .+  w )  ->  (
( ( ( inv g `  G ) `
 z )  .+  y )  .-  (
( inv g `  G ) `  z
) )  =  ( ( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) ) )
3736eleq1d 2478 . . . . . . . 8  |-  ( y  =  ( z  .+  w )  ->  (
( ( ( ( inv g `  G
) `  z )  .+  y )  .-  (
( inv g `  G ) `  z
) )  e.  S  <->  ( ( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) )  e.  S
) )
3834, 37rspc2va 3027 . . . . . . 7  |-  ( ( ( ( ( inv g `  G ) `
 z )  e.  X  /\  ( z 
.+  w )  e.  S )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  (
( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) )  e.  S
)
3919, 29, 30, 38syl21anc 1183 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( inv g `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( inv g `  G ) `  z
) )  e.  S
)
4028, 39eqeltrrd 2487 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
w  .+  z )  e.  S )
4140expr 599 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( (
z  .+  w )  e.  S  ->  ( w 
.+  z )  e.  S ) )
4241ralrimivva 2766 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  A. z  e.  X  A. w  e.  X  ( (
z  .+  w )  e.  S  ->  ( w 
.+  z )  e.  S ) )
432, 3isnsg2 14933 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. z  e.  X  A. w  e.  X  ( ( z  .+  w )  e.  S  ->  ( w  .+  z
)  e.  S ) ) )
449, 42, 43sylanbrc 646 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  S  e.  (NrmSGrp `  G )
)
458, 44impbii 181 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   ` cfv 5421  (class class class)co 6048   Basecbs 13432   +g cplusg 13492   0gc0g 13686   Grpcgrp 14648   inv gcminusg 14649   -gcsg 14651  SubGrpcsubg 14901  NrmSGrpcnsg 14902
This theorem is referenced by:  nsgacs  14939  0nsg  14948  nsgid  14949  ghmnsgima  14992  ghmnsgpreima  14993  cntrsubgnsg  15102  clsnsg  18100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-0g 13690  df-mnd 14653  df-grp 14775  df-minusg 14776  df-sbg 14777  df-subg 14904  df-nsg 14905
  Copyright terms: Public domain W3C validator