Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem2 Unicode version

Theorem isnumbasgrplem2 26939
Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem2  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp )  ->  S  e.  dom  card )

Proof of Theorem isnumbasgrplem2
Dummy variables  a 
b  c  d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 26935 . . 3  |-  Base  Fn  _V
2 ssv 3312 . . 3  |-  Grp  C_  _V
3 fvelimab 5722 . . 3  |-  ( (
Base  Fn  _V  /\  Grp  C_ 
_V )  ->  (
( S  u.  (har `  S ) )  e.  ( Base " Grp ) 
<->  E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) ) ) )
41, 2, 3mp2an 654 . 2  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp ) 
<->  E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
5 harcl 7463 . . . . . 6  |-  (har `  S )  e.  On
6 onenon 7770 . . . . . 6  |-  ( (har
`  S )  e.  On  ->  (har `  S
)  e.  dom  card )
75, 6ax-mp 8 . . . . 5  |-  (har `  S )  e.  dom  card
8 xpnum 7772 . . . . 5  |-  ( ( (har `  S )  e.  dom  card  /\  (har `  S )  e.  dom  card )  ->  ( (har `  S )  X.  (har `  S ) )  e. 
dom  card )
97, 7, 8mp2an 654 . . . 4  |-  ( (har
`  S )  X.  (har `  S )
)  e.  dom  card
10 ssun1 3454 . . . . . . . 8  |-  S  C_  ( S  u.  (har `  S ) )
11 simpr 448 . . . . . . . 8  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
1210, 11syl5sseqr 3341 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  C_  ( Base `  x ) )
13 fvex 5683 . . . . . . . 8  |-  ( Base `  x )  e.  _V
1413ssex 4289 . . . . . . 7  |-  ( S 
C_  ( Base `  x
)  ->  S  e.  _V )
1512, 14syl 16 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  e.  _V )
167a1i 11 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  (har `  S
)  e.  dom  card )
17 simp1l 981 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  x  e.  Grp )
18123ad2ant1 978 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  S  C_  ( Base `  x
) )
19 simp2 958 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  a  e.  S )
2018, 19sseldd 3293 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  a  e.  ( Base `  x
) )
21 ssun2 3455 . . . . . . . . . . 11  |-  (har `  S )  C_  ( S  u.  (har `  S
) )
2221, 11syl5sseqr 3341 . . . . . . . . . 10  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  (har `  S
)  C_  ( Base `  x ) )
23223ad2ant1 978 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (har `  S )  C_  ( Base `  x ) )
24 simp3 959 . . . . . . . . 9  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  c  e.  (har `  S )
)
2523, 24sseldd 3293 . . . . . . . 8  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  c  e.  ( Base `  x
) )
26 eqid 2388 . . . . . . . . 9  |-  ( Base `  x )  =  (
Base `  x )
27 eqid 2388 . . . . . . . . 9  |-  ( +g  `  x )  =  ( +g  `  x )
2826, 27grpcl 14746 . . . . . . . 8  |-  ( ( x  e.  Grp  /\  a  e.  ( Base `  x )  /\  c  e.  ( Base `  x
) )  ->  (
a ( +g  `  x
) c )  e.  ( Base `  x
) )
2917, 20, 25, 28syl3anc 1184 . . . . . . 7  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (
a ( +g  `  x
) c )  e.  ( Base `  x
) )
30 simp1r 982 . . . . . . 7  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  ( Base `  x )  =  ( S  u.  (har `  S ) ) )
3129, 30eleqtrd 2464 . . . . . 6  |-  ( ( ( x  e.  Grp  /\  ( Base `  x
)  =  ( S  u.  (har `  S
) ) )  /\  a  e.  S  /\  c  e.  (har `  S
) )  ->  (
a ( +g  `  x
) c )  e.  ( S  u.  (har `  S ) ) )
32 simplll 735 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  x  e.  Grp )
3322ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  (har `  S
)  C_  ( Base `  x ) )
34 simprl 733 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  c  e.  (har
`  S ) )
3533, 34sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  c  e.  (
Base `  x )
)
36 simprr 734 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  d  e.  (har
`  S ) )
3733, 36sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  d  e.  (
Base `  x )
)
3812ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  S  C_  ( Base `  x ) )
39 simplr 732 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  a  e.  S
)
4038, 39sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  a  e.  (
Base `  x )
)
4126, 27grplcan 14785 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( c  e.  (
Base `  x )  /\  d  e.  ( Base `  x )  /\  a  e.  ( Base `  x ) ) )  ->  ( ( a ( +g  `  x
) c )  =  ( a ( +g  `  x ) d )  <-> 
c  =  d ) )
4232, 35, 37, 40, 41syl13anc 1186 . . . . . 6  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  a  e.  S
)  /\  ( c  e.  (har `  S )  /\  d  e.  (har `  S ) ) )  ->  ( ( a ( +g  `  x
) c )  =  ( a ( +g  `  x ) d )  <-> 
c  =  d ) )
43 simplll 735 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  ->  x  e.  Grp )
4412ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  ->  S  C_  ( Base `  x
) )
45 simprr 734 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
d  e.  S )
4644, 45sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
d  e.  ( Base `  x ) )
47 simprl 733 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
a  e.  S )
4844, 47sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
a  e.  ( Base `  x ) )
4922ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
(har `  S )  C_  ( Base `  x
) )
50 simplr 732 . . . . . . . 8  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
b  e.  (har `  S ) )
5149, 50sseldd 3293 . . . . . . 7  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
b  e.  ( Base `  x ) )
5226, 27grprcan 14766 . . . . . . 7  |-  ( ( x  e.  Grp  /\  ( d  e.  (
Base `  x )  /\  a  e.  ( Base `  x )  /\  b  e.  ( Base `  x ) ) )  ->  ( ( d ( +g  `  x
) b )  =  ( a ( +g  `  x ) b )  <-> 
d  =  a ) )
5343, 46, 48, 51, 52syl13anc 1186 . . . . . 6  |-  ( ( ( ( x  e. 
Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  /\  b  e.  (har
`  S ) )  /\  ( a  e.  S  /\  d  e.  S ) )  -> 
( ( d ( +g  `  x ) b )  =  ( a ( +g  `  x
) b )  <->  d  =  a ) )
54 harndom 7466 . . . . . . 7  |-  -.  (har `  S )  ~<_  S
5554a1i 11 . . . . . 6  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  -.  (har `  S )  ~<_  S )
5615, 16, 16, 31, 42, 53, 55unxpwdom3 26926 . . . . 5  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  ~<_*  ( (har `  S
)  X.  (har `  S ) ) )
57 wdomnumr 7879 . . . . . 6  |-  ( ( (har `  S )  X.  (har `  S )
)  e.  dom  card  -> 
( S  ~<_*  ( (har `  S
)  X.  (har `  S ) )  <->  S  ~<_  ( (har
`  S )  X.  (har `  S )
) ) )
589, 57ax-mp 8 . . . . 5  |-  ( S  ~<_*  ( (har `  S )  X.  (har `  S )
)  <->  S  ~<_  ( (har `  S )  X.  (har `  S ) ) )
5956, 58sylib 189 . . . 4  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  ~<_  ( (har
`  S )  X.  (har `  S )
) )
60 numdom 7853 . . . 4  |-  ( ( ( (har `  S
)  X.  (har `  S ) )  e. 
dom  card  /\  S  ~<_  ( (har
`  S )  X.  (har `  S )
) )  ->  S  e.  dom  card )
619, 59, 60sylancr 645 . . 3  |-  ( ( x  e.  Grp  /\  ( Base `  x )  =  ( S  u.  (har `  S ) ) )  ->  S  e.  dom  card )
6261rexlimiva 2769 . 2  |-  ( E. x  e.  Grp  ( Base `  x )  =  ( S  u.  (har `  S ) )  ->  S  e.  dom  card )
634, 62sylbi 188 1  |-  ( ( S  u.  (har `  S ) )  e.  ( Base " Grp )  ->  S  e.  dom  card )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2651   _Vcvv 2900    u. cun 3262    C_ wss 3264   class class class wbr 4154   Oncon0 4523    X. cxp 4817   dom cdm 4819   "cima 4822    Fn wfn 5390   ` cfv 5395  (class class class)co 6021    ~<_ cdom 7044  harchar 7458    ~<_* cwdom 7459   cardccrd 7756   Basecbs 13397   +g cplusg 13457   Grpcgrp 14613
This theorem is referenced by:  isnumbasabl  26941  isnumbasgrp  26942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-oi 7413  df-har 7460  df-wdom 7461  df-card 7760  df-acn 7763  df-slot 13401  df-base 13402  df-0g 13655  df-mnd 14618  df-grp 14740  df-minusg 14741
  Copyright terms: Public domain W3C validator