MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Unicode version

Theorem isnv 21168
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1  |-  X  =  ran  G
isnv.2  |-  Z  =  (GId `  G )
Assertion
Ref Expression
isnv  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Distinct variable groups:    x, y, G    x, N, y    x, S, y    x, X, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 21167 . 2  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
2 vcex 21136 . . . . 5  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  ( G  e.  _V  /\  S  e. 
_V ) )
32adantr 451 . . . 4  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  ( G  e.  _V  /\  S  e.  _V ) )
4 isnv.1 . . . . . . 7  |-  X  =  ran  G
52simpld 445 . . . . . . . 8  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  G  e.  _V )
6 rnexg 4940 . . . . . . . 8  |-  ( G  e.  _V  ->  ran  G  e.  _V )
75, 6syl 15 . . . . . . 7  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  ran  G  e. 
_V )
84, 7syl5eqel 2367 . . . . . 6  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  X  e.  _V )
9 fex 5749 . . . . . 6  |-  ( ( N : X --> RR  /\  X  e.  _V )  ->  N  e.  _V )
108, 9sylan2 460 . . . . 5  |-  ( ( N : X --> RR  /\  <. G ,  S >.  e. 
CVec OLD )  ->  N  e.  _V )
1110ancoms 439 . . . 4  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  N  e.  _V )
12 df-3an 936 . . . 4  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  <->  ( ( G  e.  _V  /\  S  e.  _V )  /\  N  e.  _V ) )
133, 11, 12sylanbrc 645 . . 3  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
14133adant3 975 . 2  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR  /\  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
15 isnv.2 . . 3  |-  Z  =  (GId `  G )
164, 15isnvlem 21166 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) ) )
171, 14, 16pm5.21nii 342 1  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   <.cop 3643   class class class wbr 4023   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    <_ cle 8868   abscabs 11719  GIdcgi 20854   CVec OLDcvc 21101   NrmCVeccnv 21140
This theorem is referenced by:  isnvi  21169  nvi  21170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-vc 21102  df-nv 21148
  Copyright terms: Public domain W3C validator