MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnv Structured version   Unicode version

Theorem isnv 22096
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnv.1  |-  X  =  ran  G
isnv.2  |-  Z  =  (GId `  G )
Assertion
Ref Expression
isnv  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Distinct variable groups:    x, y, G    x, N, y    x, S, y    x, X, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem isnv
StepHypRef Expression
1 nvex 22095 . 2  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
2 vcex 22064 . . . . 5  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  ( G  e.  _V  /\  S  e. 
_V ) )
32adantr 453 . . . 4  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  ( G  e.  _V  /\  S  e.  _V ) )
4 isnv.1 . . . . . . 7  |-  X  =  ran  G
52simpld 447 . . . . . . . 8  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  G  e.  _V )
6 rnexg 5134 . . . . . . . 8  |-  ( G  e.  _V  ->  ran  G  e.  _V )
75, 6syl 16 . . . . . . 7  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  ran  G  e. 
_V )
84, 7syl5eqel 2522 . . . . . 6  |-  ( <. G ,  S >.  e. 
CVec OLD  ->  X  e.  _V )
9 fex 5972 . . . . . 6  |-  ( ( N : X --> RR  /\  X  e.  _V )  ->  N  e.  _V )
108, 9sylan2 462 . . . . 5  |-  ( ( N : X --> RR  /\  <. G ,  S >.  e. 
CVec OLD )  ->  N  e.  _V )
1110ancoms 441 . . . 4  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  N  e.  _V )
12 df-3an 939 . . . 4  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  <->  ( ( G  e.  _V  /\  S  e.  _V )  /\  N  e.  _V ) )
133, 11, 12sylanbrc 647 . . 3  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR )  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
14133adant3 978 . 2  |-  ( (
<. G ,  S >.  e. 
CVec OLD  /\  N : X
--> RR  /\  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )  ->  ( G  e.  _V  /\  S  e.  _V  /\  N  e. 
_V ) )
15 isnv.2 . . 3  |-  Z  =  (GId `  G )
164, 15isnvlem 22094 . 2  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) ) )
171, 14, 16pm5.21nii 344 1  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVec OLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   <.cop 3819   class class class wbr 4215   ran crn 4882   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    + caddc 8998    x. cmul 9000    <_ cle 9126   abscabs 12044  GIdcgi 21780   CVec OLDcvc 22029   NrmCVeccnv 22068
This theorem is referenced by:  isnvi  22097  nvi  22098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-vc 22030  df-nv 22076
  Copyright terms: Public domain W3C validator