MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isobs Unicode version

Theorem isobs 16620
Description: The predicate "is an orthonormal basis" (over a pre-Hilbert space). (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v  |-  V  =  ( Base `  W
)
isobs.h  |-  .,  =  ( .i `  W )
isobs.f  |-  F  =  (Scalar `  W )
isobs.u  |-  .1.  =  ( 1r `  F )
isobs.z  |-  .0.  =  ( 0g `  F )
isobs.o  |-  ._|_  =  ( ocv `  W )
isobs.y  |-  Y  =  ( 0g `  W
)
Assertion
Ref Expression
isobs  |-  ( B  e.  (OBasis `  W
)  <->  ( W  e. 
PreHil  /\  B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B
)  =  { Y } ) ) )
Distinct variable groups:    x, y,  .,    x,  .0. , y    x,  .1. , y    x, B, y   
x, W, y
Allowed substitution hints:    F( x, y)    ._|_ ( x, y)    V( x, y)    Y( x, y)

Proof of Theorem isobs
Dummy variables  h  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-obs 16605 . . . . 5  |- OBasis  =  ( h  e.  PreHil  |->  { b  e.  ~P ( Base `  h )  |  ( A. x  e.  b 
A. y  e.  b  ( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) } )
21dmmptss 5169 . . . 4  |-  dom OBasis  C_  PreHil
3 elfvdm 5554 . . . 4  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  dom OBasis )
42, 3sseldi 3178 . . 3  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  PreHil )
5 fveq2 5525 . . . . . . . . 9  |-  ( h  =  W  ->  ( Base `  h )  =  ( Base `  W
) )
6 isobs.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
75, 6syl6eqr 2333 . . . . . . . 8  |-  ( h  =  W  ->  ( Base `  h )  =  V )
87pweqd 3630 . . . . . . 7  |-  ( h  =  W  ->  ~P ( Base `  h )  =  ~P V )
9 fveq2 5525 . . . . . . . . . . . 12  |-  ( h  =  W  ->  ( .i `  h )  =  ( .i `  W
) )
10 isobs.h . . . . . . . . . . . 12  |-  .,  =  ( .i `  W )
119, 10syl6eqr 2333 . . . . . . . . . . 11  |-  ( h  =  W  ->  ( .i `  h )  = 
.,  )
1211oveqd 5875 . . . . . . . . . 10  |-  ( h  =  W  ->  (
x ( .i `  h ) y )  =  ( x  .,  y ) )
13 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( h  =  W  ->  (Scalar `  h )  =  (Scalar `  W ) )
14 isobs.f . . . . . . . . . . . . . 14  |-  F  =  (Scalar `  W )
1513, 14syl6eqr 2333 . . . . . . . . . . . . 13  |-  ( h  =  W  ->  (Scalar `  h )  =  F )
1615fveq2d 5529 . . . . . . . . . . . 12  |-  ( h  =  W  ->  ( 1r `  (Scalar `  h
) )  =  ( 1r `  F ) )
17 isobs.u . . . . . . . . . . . 12  |-  .1.  =  ( 1r `  F )
1816, 17syl6eqr 2333 . . . . . . . . . . 11  |-  ( h  =  W  ->  ( 1r `  (Scalar `  h
) )  =  .1.  )
1915fveq2d 5529 . . . . . . . . . . . 12  |-  ( h  =  W  ->  ( 0g `  (Scalar `  h
) )  =  ( 0g `  F ) )
20 isobs.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  F )
2119, 20syl6eqr 2333 . . . . . . . . . . 11  |-  ( h  =  W  ->  ( 0g `  (Scalar `  h
) )  =  .0.  )
2218, 21ifeq12d 3581 . . . . . . . . . 10  |-  ( h  =  W  ->  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  =  if ( x  =  y ,  .1.  ,  .0.  )
)
2312, 22eqeq12d 2297 . . . . . . . . 9  |-  ( h  =  W  ->  (
( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  <-> 
( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )
) )
24232ralbidv 2585 . . . . . . . 8  |-  ( h  =  W  ->  ( A. x  e.  b  A. y  e.  b 
( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  <->  A. x  e.  b  A. y  e.  b 
( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )
) )
25 fveq2 5525 . . . . . . . . . . 11  |-  ( h  =  W  ->  ( ocv `  h )  =  ( ocv `  W
) )
26 isobs.o . . . . . . . . . . 11  |-  ._|_  =  ( ocv `  W )
2725, 26syl6eqr 2333 . . . . . . . . . 10  |-  ( h  =  W  ->  ( ocv `  h )  = 
._|_  )
2827fveq1d 5527 . . . . . . . . 9  |-  ( h  =  W  ->  (
( ocv `  h
) `  b )  =  (  ._|_  `  b
) )
29 fveq2 5525 . . . . . . . . . . 11  |-  ( h  =  W  ->  ( 0g `  h )  =  ( 0g `  W
) )
30 isobs.y . . . . . . . . . . 11  |-  Y  =  ( 0g `  W
)
3129, 30syl6eqr 2333 . . . . . . . . . 10  |-  ( h  =  W  ->  ( 0g `  h )  =  Y )
3231sneqd 3653 . . . . . . . . 9  |-  ( h  =  W  ->  { ( 0g `  h ) }  =  { Y } )
3328, 32eqeq12d 2297 . . . . . . . 8  |-  ( h  =  W  ->  (
( ( ocv `  h
) `  b )  =  { ( 0g `  h ) }  <->  (  ._|_  `  b )  =  { Y } ) )
3424, 33anbi12d 691 . . . . . . 7  |-  ( h  =  W  ->  (
( A. x  e.  b  A. y  e.  b  ( x ( .i `  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `
 b )  =  { ( 0g `  h ) } )  <-> 
( A. x  e.  b  A. y  e.  b  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } ) ) )
358, 34rabeqbidv 2783 . . . . . 6  |-  ( h  =  W  ->  { b  e.  ~P ( Base `  h )  |  ( A. x  e.  b 
A. y  e.  b  ( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) }  =  { b  e.  ~P V  |  ( A. x  e.  b  A. y  e.  b  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b )  =  { Y } ) } )
36 fvex 5539 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
376, 36eqeltri 2353 . . . . . . . 8  |-  V  e. 
_V
3837pwex 4193 . . . . . . 7  |-  ~P V  e.  _V
3938rabex 4165 . . . . . 6  |-  { b  e.  ~P V  | 
( A. x  e.  b  A. y  e.  b  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } ) }  e.  _V
4035, 1, 39fvmpt 5602 . . . . 5  |-  ( W  e.  PreHil  ->  (OBasis `  W )  =  { b  e.  ~P V  |  ( A. x  e.  b  A. y  e.  b  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b )  =  { Y } ) } )
4140eleq2d 2350 . . . 4  |-  ( W  e.  PreHil  ->  ( B  e.  (OBasis `  W )  <->  B  e.  { b  e. 
~P V  |  ( A. x  e.  b 
A. y  e.  b  ( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } ) } ) )
42 raleq 2736 . . . . . . . 8  |-  ( b  =  B  ->  ( A. y  e.  b 
( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  <->  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  ) ) )
4342raleqbi1dv 2744 . . . . . . 7  |-  ( b  =  B  ->  ( A. x  e.  b  A. y  e.  b 
( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  <->  A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  ) ) )
44 fveq2 5525 . . . . . . . 8  |-  ( b  =  B  ->  (  ._|_  `  b )  =  (  ._|_  `  B ) )
4544eqeq1d 2291 . . . . . . 7  |-  ( b  =  B  ->  (
(  ._|_  `  b )  =  { Y }  <->  (  ._|_  `  B )  =  { Y } ) )
4643, 45anbi12d 691 . . . . . 6  |-  ( b  =  B  ->  (
( A. x  e.  b  A. y  e.  b  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } )  <->  ( A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) ) )
4746elrab 2923 . . . . 5  |-  ( B  e.  { b  e. 
~P V  |  ( A. x  e.  b 
A. y  e.  b  ( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } ) }  <->  ( B  e.  ~P V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) ) )
4837elpw2 4175 . . . . . 6  |-  ( B  e.  ~P V  <->  B  C_  V
)
4948anbi1i 676 . . . . 5  |-  ( ( B  e.  ~P V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B
)  =  { Y } ) )  <->  ( B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) ) )
5047, 49bitri 240 . . . 4  |-  ( B  e.  { b  e. 
~P V  |  ( A. x  e.  b 
A. y  e.  b  ( x  .,  y
)  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  b
)  =  { Y } ) }  <->  ( B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) ) )
5141, 50syl6bb 252 . . 3  |-  ( W  e.  PreHil  ->  ( B  e.  (OBasis `  W )  <->  ( B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) ) ) )
524, 51biadan2 623 . 2  |-  ( B  e.  (OBasis `  W
)  <->  ( W  e. 
PreHil  /\  ( B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B
)  =  { Y } ) ) ) )
53 3anass 938 . 2  |-  ( ( W  e.  PreHil  /\  B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  (
x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B )  =  { Y } ) )  <->  ( W  e. 
PreHil  /\  ( B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B
)  =  { Y } ) ) ) )
5452, 53bitr4i 243 1  |-  ( B  e.  (OBasis `  W
)  <->  ( W  e. 
PreHil  /\  B  C_  V  /\  ( A. x  e.  B  A. y  e.  B  ( x  .,  y )  =  if ( x  =  y ,  .1.  ,  .0.  )  /\  (  ._|_  `  B
)  =  { Y } ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    C_ wss 3152   ifcif 3565   ~Pcpw 3625   {csn 3640   dom cdm 4689   ` cfv 5255  (class class class)co 5858   Basecbs 13148  Scalarcsca 13211   .icip 13213   0gc0g 13400   1rcur 15339   PreHilcphl 16528   ocvcocv 16560  OBasiscobs 16602
This theorem is referenced by:  obsip  16621  obsrcl  16623  obsss  16624  obsocv  16626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-obs 16605
  Copyright terms: Public domain W3C validator