MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv2 Unicode version

Theorem isocnv2 5828
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )

Proof of Theorem isocnv2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 2700 . . . 4  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
2 vex 2791 . . . . . . 7  |-  x  e. 
_V
3 vex 2791 . . . . . . 7  |-  y  e. 
_V
42, 3brcnv 4864 . . . . . 6  |-  ( x `' R y  <->  y R x )
5 fvex 5539 . . . . . . 7  |-  ( H `
 x )  e. 
_V
6 fvex 5539 . . . . . . 7  |-  ( H `
 y )  e. 
_V
75, 6brcnv 4864 . . . . . 6  |-  ( ( H `  x ) `' S ( H `  y )  <->  ( H `  y ) S ( H `  x ) )
84, 7bibi12i 306 . . . . 5  |-  ( ( x `' R y  <-> 
( H `  x
) `' S ( H `  y ) )  <->  ( y R x  <->  ( H `  y ) S ( H `  x ) ) )
982ralbii 2569 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x `' R y  <-> 
( H `  x
) `' S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
101, 9bitr4i 243 . . 3  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) ) )
1110anbi2i 675 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
12 df-isom 5264 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) ) )
13 df-isom 5264 . 2  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
1411, 12, 133bitr4i 268 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wral 2543   class class class wbr 4023   `'ccnv 4688   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256
This theorem is referenced by:  wofib  7260  leiso  11397  gtiso  23241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-cnv 4697  df-iota 5219  df-fv 5263  df-isom 5264
  Copyright terms: Public domain W3C validator