MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv2 Structured version   Unicode version

Theorem isocnv2 6051
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )

Proof of Theorem isocnv2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 2868 . . . 4  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
2 vex 2959 . . . . . . 7  |-  x  e. 
_V
3 vex 2959 . . . . . . 7  |-  y  e. 
_V
42, 3brcnv 5055 . . . . . 6  |-  ( x `' R y  <->  y R x )
5 fvex 5742 . . . . . . 7  |-  ( H `
 x )  e. 
_V
6 fvex 5742 . . . . . . 7  |-  ( H `
 y )  e. 
_V
75, 6brcnv 5055 . . . . . 6  |-  ( ( H `  x ) `' S ( H `  y )  <->  ( H `  y ) S ( H `  x ) )
84, 7bibi12i 307 . . . . 5  |-  ( ( x `' R y  <-> 
( H `  x
) `' S ( H `  y ) )  <->  ( y R x  <->  ( H `  y ) S ( H `  x ) ) )
982ralbii 2731 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x `' R y  <-> 
( H `  x
) `' S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) )
101, 9bitr4i 244 . . 3  |-  ( A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) )  <->  A. x  e.  A  A. y  e.  A  ( x `' R
y  <->  ( H `  x ) `' S
( H `  y
) ) )
1110anbi2i 676 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  (
y R x  <->  ( H `  y ) S ( H `  x ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
12 df-isom 5463 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. x  e.  A  ( y R x  <-> 
( H `  y
) S ( H `
 x ) ) ) )
13 df-isom 5463 . 2  |-  ( H 
Isom  `' R ,  `' S
( A ,  B
)  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x `' R y  <->  ( H `  x ) `' S
( H `  y
) ) ) )
1411, 12, 133bitr4i 269 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  `' R ,  `' S ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   A.wral 2705   class class class wbr 4212   `'ccnv 4877   -1-1-onto->wf1o 5453   ` cfv 5454    Isom wiso 5455
This theorem is referenced by:  wofib  7514  leiso  11708  gtiso  24088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-cnv 4886  df-iota 5418  df-fv 5462  df-isom 5463
  Copyright terms: Public domain W3C validator