MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv3 Unicode version

Theorem isocnv3 5845
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
isocnv3.1  |-  C  =  ( ( A  X.  A )  \  R
)
isocnv3.2  |-  D  =  ( ( B  X.  B )  \  S
)
Assertion
Ref Expression
isocnv3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  C ,  D  ( A ,  B ) )

Proof of Theorem isocnv3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4736 . . . . . . . 8  |-  ( x ( A  X.  A
) y  <->  ( x  e.  A  /\  y  e.  A ) )
2 isocnv3.1 . . . . . . . . . . 11  |-  C  =  ( ( A  X.  A )  \  R
)
32breqi 4045 . . . . . . . . . 10  |-  ( x C y  <->  x (
( A  X.  A
)  \  R )
y )
4 brdif 4087 . . . . . . . . . 10  |-  ( x ( ( A  X.  A )  \  R
) y  <->  ( x
( A  X.  A
) y  /\  -.  x R y ) )
53, 4bitri 240 . . . . . . . . 9  |-  ( x C y  <->  ( x
( A  X.  A
) y  /\  -.  x R y ) )
65baib 871 . . . . . . . 8  |-  ( x ( A  X.  A
) y  ->  (
x C y  <->  -.  x R y ) )
71, 6sylbir 204 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x C y  <->  -.  x R y ) )
87adantl 452 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x C y  <->  -.  x R y ) )
9 f1of 5488 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
10 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
11 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
1210, 11anim12dan 810 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
)  e.  B  /\  ( H `  y )  e.  B ) )
13 brxp 4736 . . . . . . . . 9  |-  ( ( H `  x ) ( B  X.  B
) ( H `  y )  <->  ( ( H `  x )  e.  B  /\  ( H `  y )  e.  B ) )
1412, 13sylibr 203 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )
( B  X.  B
) ( H `  y ) )
159, 14sylan 457 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )
( B  X.  B
) ( H `  y ) )
16 isocnv3.2 . . . . . . . . . 10  |-  D  =  ( ( B  X.  B )  \  S
)
1716breqi 4045 . . . . . . . . 9  |-  ( ( H `  x ) D ( H `  y )  <->  ( H `  x ) ( ( B  X.  B ) 
\  S ) ( H `  y ) )
18 brdif 4087 . . . . . . . . 9  |-  ( ( H `  x ) ( ( B  X.  B )  \  S
) ( H `  y )  <->  ( ( H `  x )
( B  X.  B
) ( H `  y )  /\  -.  ( H `  x ) S ( H `  y ) ) )
1917, 18bitri 240 . . . . . . . 8  |-  ( ( H `  x ) D ( H `  y )  <->  ( ( H `  x )
( B  X.  B
) ( H `  y )  /\  -.  ( H `  x ) S ( H `  y ) ) )
2019baib 871 . . . . . . 7  |-  ( ( H `  x ) ( B  X.  B
) ( H `  y )  ->  (
( H `  x
) D ( H `
 y )  <->  -.  ( H `  x ) S ( H `  y ) ) )
2115, 20syl 15 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) D ( H `
 y )  <->  -.  ( H `  x ) S ( H `  y ) ) )
228, 21bibi12d 312 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x C y  <-> 
( H `  x
) D ( H `
 y ) )  <-> 
( -.  x R y  <->  -.  ( H `  x ) S ( H `  y ) ) ) )
23 notbi 286 . . . . 5  |-  ( ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( -.  x R y  <->  -.  ( H `  x ) S ( H `  y ) ) )
2422, 23syl6rbbr 255 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
25242ralbidva 2596 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
2625pm5.32i 618 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x C y  <->  ( H `  x ) D ( H `  y ) ) ) )
27 df-isom 5280 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
28 df-isom 5280 . 2  |-  ( H 
Isom  C ,  D  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
2926, 27, 283bitr4i 268 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  C ,  D  ( A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    \ cdif 3162   class class class wbr 4039    X. cxp 4703   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272
This theorem is referenced by:  leiso  11413  gtiso  23256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278  df-fv 5279  df-isom 5280
  Copyright terms: Public domain W3C validator