MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq1 Structured version   Unicode version

Theorem isoeq1 6031
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq1  |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
G  Isom  R ,  S  ( A ,  B ) ) )

Proof of Theorem isoeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5657 . . 3  |-  ( H  =  G  ->  ( H : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )
2 fveq1 5719 . . . . . 6  |-  ( H  =  G  ->  ( H `  x )  =  ( G `  x ) )
3 fveq1 5719 . . . . . 6  |-  ( H  =  G  ->  ( H `  y )  =  ( G `  y ) )
42, 3breq12d 4217 . . . . 5  |-  ( H  =  G  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  x ) S ( G `  y ) ) )
54bibi2d 310 . . . 4  |-  ( H  =  G  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
652ralbidv 2739 . . 3  |-  ( H  =  G  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
71, 6anbi12d 692 . 2  |-  ( H  =  G  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( G : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( G `  x ) S ( G `  y ) ) ) ) )
8 df-isom 5455 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
9 df-isom 5455 . 2  |-  ( G 
Isom  R ,  S  ( A ,  B )  <-> 
( G : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( G `  x
) S ( G `
 y ) ) ) )
107, 8, 93bitr4g 280 1  |-  ( H  =  G  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
G  Isom  R ,  S  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652   A.wral 2697   class class class wbr 4204   -1-1-onto->wf1o 5445   ` cfv 5446    Isom wiso 5447
This theorem is referenced by:  isores1  6046  wemoiso  6070  wemoiso2  6071  ordiso  7475  oieu  7498  finnisoeu  7984  iunfictbso  7985  infmsup  9976  ltweuz  11291  fz1isolem  11700  isercolllem2  12449  isercoll  12451  dvgt0lem2  19877  efcvx  20355  relogiso  20482  logccv  20544  erdszelem1  24867  erdsze  24878  erdsze2lem2  24880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455
  Copyright terms: Public domain W3C validator