Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq3 Structured version   Unicode version

Theorem isoeq3 6041
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3

Proof of Theorem isoeq3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4214 . . . . 5
21bibi2d 310 . . . 4
322ralbidv 2747 . . 3
43anbi2d 685 . 2
5 df-isom 5463 . 2
6 df-isom 5463 . 2
74, 5, 63bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652  wral 2705   class class class wbr 4212  wf1o 5453  cfv 5454   wiso 5455 This theorem is referenced by:  fnwelem  6461  hartogslem1  7511  leiso  11708  gtiso  24088 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-cleq 2429  df-clel 2432  df-ral 2710  df-br 4213  df-isom 5463
 Copyright terms: Public domain W3C validator