MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq4 Unicode version

Theorem isoeq4 5819
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )

Proof of Theorem isoeq4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5464 . . 3  |-  ( A  =  C  ->  ( H : A -1-1-onto-> B  <->  H : C -1-1-onto-> B ) )
2 raleq 2736 . . . 4  |-  ( A  =  C  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32raleqbi1dv 2744 . . 3  |-  ( A  =  C  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
41, 3anbi12d 691 . 2  |-  ( A  =  C  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : C
-1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) ) )
5 df-isom 5264 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5264 . 2  |-  ( H 
Isom  R ,  S  ( C ,  B )  <-> 
( H : C -1-1-onto-> B  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
74, 5, 63bitr4g 279 1  |-  ( A  =  C  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( C ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623   A.wral 2543   class class class wbr 4023   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256
This theorem is referenced by:  oieu  7254  oiid  7256  finnisoeu  7740  iunfictbso  7741  fz1isolem  11399  isercolllem3  12140  summolem2a  12188  erdszelem1  23722  erdsze  23733  erdsze2lem1  23734  erdsze2lem2  23735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-isom 5264
  Copyright terms: Public domain W3C validator