Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isolatiN Unicode version

Theorem isolatiN 29406
Description: Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isolati.1  |-  K  e. 
Lat
isolati.2  |-  K  e.  OP
Assertion
Ref Expression
isolatiN  |-  K  e.  OL

Proof of Theorem isolatiN
StepHypRef Expression
1 isolati.1 . 2  |-  K  e. 
Lat
2 isolati.2 . 2  |-  K  e.  OP
3 isolat 29402 . 2  |-  ( K  e.  OL  <->  ( K  e.  Lat  /\  K  e.  OP ) )
41, 2, 3mpbir2an 886 1  |-  K  e.  OL
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   Latclat 14151   OPcops 29362   OLcol 29364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ol 29368
  Copyright terms: Public domain W3C validator