Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isoml Unicode version

Theorem isoml 29428
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
isoml.b  |-  B  =  ( Base `  K
)
isoml.l  |-  .<_  =  ( le `  K )
isoml.j  |-  .\/  =  ( join `  K )
isoml.m  |-  ./\  =  ( meet `  K )
isoml.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
isoml  |-  ( K  e.  OML  <->  ( K  e.  OL  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  ->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) ) ) )
Distinct variable groups:    x, y, B    x, K, y
Allowed substitution hints:    .\/ ( x, y)    .<_ ( x, y)    ./\ ( x, y)    ._|_ ( x, y)

Proof of Theorem isoml
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . 4  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
2 isoml.b . . . 4  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2333 . . 3  |-  ( k  =  K  ->  ( Base `  k )  =  B )
4 fveq2 5525 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
5 isoml.l . . . . . . 7  |-  .<_  =  ( le `  K )
64, 5syl6eqr 2333 . . . . . 6  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
76breqd 4034 . . . . 5  |-  ( k  =  K  ->  (
x ( le `  k ) y  <->  x  .<_  y ) )
8 fveq2 5525 . . . . . . . 8  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
9 isoml.j . . . . . . . 8  |-  .\/  =  ( join `  K )
108, 9syl6eqr 2333 . . . . . . 7  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
11 eqidd 2284 . . . . . . 7  |-  ( k  =  K  ->  x  =  x )
12 fveq2 5525 . . . . . . . . 9  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
13 isoml.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
1412, 13syl6eqr 2333 . . . . . . . 8  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
15 eqidd 2284 . . . . . . . 8  |-  ( k  =  K  ->  y  =  y )
16 fveq2 5525 . . . . . . . . . 10  |-  ( k  =  K  ->  ( oc `  k )  =  ( oc `  K
) )
17 isoml.o . . . . . . . . . 10  |-  ._|_  =  ( oc `  K )
1816, 17syl6eqr 2333 . . . . . . . . 9  |-  ( k  =  K  ->  ( oc `  k )  = 
._|_  )
1918fveq1d 5527 . . . . . . . 8  |-  ( k  =  K  ->  (
( oc `  k
) `  x )  =  (  ._|_  `  x
) )
2014, 15, 19oveq123d 5879 . . . . . . 7  |-  ( k  =  K  ->  (
y ( meet `  k
) ( ( oc
`  k ) `  x ) )  =  ( y  ./\  (  ._|_  `  x ) ) )
2110, 11, 20oveq123d 5879 . . . . . 6  |-  ( k  =  K  ->  (
x ( join `  k
) ( y (
meet `  k )
( ( oc `  k ) `  x
) ) )  =  ( x  .\/  (
y  ./\  (  ._|_  `  x ) ) ) )
2221eqeq2d 2294 . . . . 5  |-  ( k  =  K  ->  (
y  =  ( x ( join `  k
) ( y (
meet `  k )
( ( oc `  k ) `  x
) ) )  <->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) ) )
237, 22imbi12d 311 . . . 4  |-  ( k  =  K  ->  (
( x ( le
`  k ) y  ->  y  =  ( x ( join `  k
) ( y (
meet `  k )
( ( oc `  k ) `  x
) ) ) )  <-> 
( x  .<_  y  -> 
y  =  ( x 
.\/  ( y  ./\  (  ._|_  `  x )
) ) ) ) )
243, 23raleqbidv 2748 . . 3  |-  ( k  =  K  ->  ( A. y  e.  ( Base `  k ) ( x ( le `  k ) y  -> 
y  =  ( x ( join `  k
) ( y (
meet `  k )
( ( oc `  k ) `  x
) ) ) )  <->  A. y  e.  B  ( x  .<_  y  -> 
y  =  ( x 
.\/  ( y  ./\  (  ._|_  `  x )
) ) ) ) )
253, 24raleqbidv 2748 . 2  |-  ( k  =  K  ->  ( A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k
) y  ->  y  =  ( x (
join `  k )
( y ( meet `  k ) ( ( oc `  k ) `
 x ) ) ) )  <->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  ->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) ) ) )
26 df-oml 29369 . 2  |-  OML  =  { k  e.  OL  |  A. x  e.  (
Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k ) y  -> 
y  =  ( x ( join `  k
) ( y (
meet `  k )
( ( oc `  k ) `  x
) ) ) ) }
2725, 26elrab2 2925 1  |-  ( K  e.  OML  <->  ( K  e.  OL  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  ->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   occoc 13216   joincjn 14078   meetcmee 14079   OLcol 29364   OMLcoml 29365
This theorem is referenced by:  isomliN  29429  omlol  29430  omllaw  29433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-oml 29369
  Copyright terms: Public domain W3C validator