Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomliN Unicode version

Theorem isomliN 29355
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isomli.0  |-  K  e.  OL
isomli.b  |-  B  =  ( Base `  K
)
isomli.l  |-  .<_  =  ( le `  K )
isomli.j  |-  .\/  =  ( join `  K )
isomli.m  |-  ./\  =  ( meet `  K )
isomli.o  |-  ._|_  =  ( oc `  K )
isomli.7  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
y  =  ( x 
.\/  ( y  ./\  (  ._|_  `  x )
) ) ) )
Assertion
Ref Expression
isomliN  |-  K  e. 
OML
Distinct variable groups:    x, y, B    x, K, y
Allowed substitution hints:    .\/ ( x, y)    .<_ ( x, y)    ./\ ( x, y)    ._|_ ( x, y)

Proof of Theorem isomliN
StepHypRef Expression
1 isomli.0 . 2  |-  K  e.  OL
2 isomli.7 . . 3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .<_  y  -> 
y  =  ( x 
.\/  ( y  ./\  (  ._|_  `  x )
) ) ) )
32rgen2a 2716 . 2  |-  A. x  e.  B  A. y  e.  B  ( x  .<_  y  ->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) )
4 isomli.b . . 3  |-  B  =  ( Base `  K
)
5 isomli.l . . 3  |-  .<_  =  ( le `  K )
6 isomli.j . . 3  |-  .\/  =  ( join `  K )
7 isomli.m . . 3  |-  ./\  =  ( meet `  K )
8 isomli.o . . 3  |-  ._|_  =  ( oc `  K )
94, 5, 6, 7, 8isoml 29354 . 2  |-  ( K  e.  OML  <->  ( K  e.  OL  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  ->  y  =  ( x  .\/  ( y 
./\  (  ._|_  `  x
) ) ) ) ) )
101, 3, 9mpbir2an 887 1  |-  K  e. 
OML
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   occoc 13465   joincjn 14329   meetcmee 14330   OLcol 29290   OMLcoml 29291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-iota 5359  df-fv 5403  df-ov 6024  df-oml 29295
  Copyright terms: Public domain W3C validator