MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn3i Structured version   Unicode version

Theorem isopn3i 17146
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
isopn3i  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( ( int `  J
) `  S )  =  S )

Proof of Theorem isopn3i
StepHypRef Expression
1 simpr 448 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  S  e.  J )
2 elssuni 4043 . . 3  |-  ( S  e.  J  ->  S  C_ 
U. J )
3 eqid 2436 . . . 4  |-  U. J  =  U. J
43isopn3 17130 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  J  <->  ( ( int `  J ) `  S
)  =  S ) )
52, 4sylan2 461 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( S  e.  J  <->  ( ( int `  J
) `  S )  =  S ) )
61, 5mpbid 202 1  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( ( int `  J
) `  S )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   U.cuni 4015   ` cfv 5454   Topctop 16958   intcnt 17081
This theorem is referenced by:  maxlp  17211  cnntr  17339  bcth2  19283  dvrec  19841  dvmptres  19849  dvcnvlem  19860  dvlip  19877  dvlipcn  19878  dvlip2  19879  dvne0  19895  lhop2  19899  lhop  19900  psercn  20342  dvlog  20542  dvlog2  20544  cxpcn3  20632  efrlim  20808  lgamgulmlem2  24814  cvmlift2lem11  25000  cvmlift2lem12  25001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-top 16963  df-ntr 17084
  Copyright terms: Public domain W3C validator