Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Unicode version

Theorem isopos 29992
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
isopos.b  |-  B  =  ( Base `  K
)
isopos.l  |-  .<_  =  ( le `  K )
isopos.o  |-  ._|_  =  ( oc `  K )
isopos.j  |-  .\/  =  ( join `  K )
isopos.m  |-  ./\  =  ( meet `  K )
isopos.f  |-  .0.  =  ( 0. `  K )
isopos.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
isopos  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  .0.  e.  B  /\  .1.  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Distinct variable groups:    x, y, B    x,  ._|_ , y    x, K, y
Allowed substitution hints:    .1. ( x, y)    .\/ ( x, y)    .<_ ( x, y)    ./\ (
x, y)    .0. ( x, y)

Proof of Theorem isopos
Dummy variables  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . . . 7  |-  ( p  =  K  ->  ( 0. `  p )  =  ( 0. `  K
) )
2 isopos.f . . . . . . 7  |-  .0.  =  ( 0. `  K )
31, 2syl6eqr 2346 . . . . . 6  |-  ( p  =  K  ->  ( 0. `  p )  =  .0.  )
4 fveq2 5541 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
5 isopos.b . . . . . . 7  |-  B  =  ( Base `  K
)
64, 5syl6eqr 2346 . . . . . 6  |-  ( p  =  K  ->  ( Base `  p )  =  B )
73, 6eleq12d 2364 . . . . 5  |-  ( p  =  K  ->  (
( 0. `  p
)  e.  ( Base `  p )  <->  .0.  e.  B ) )
8 fveq2 5541 . . . . . . 7  |-  ( p  =  K  ->  ( 1. `  p )  =  ( 1. `  K
) )
9 isopos.u . . . . . . 7  |-  .1.  =  ( 1. `  K )
108, 9syl6eqr 2346 . . . . . 6  |-  ( p  =  K  ->  ( 1. `  p )  =  .1.  )
1110, 6eleq12d 2364 . . . . 5  |-  ( p  =  K  ->  (
( 1. `  p
)  e.  ( Base `  p )  <->  .1.  e.  B ) )
127, 11anbi12d 691 . . . 4  |-  ( p  =  K  ->  (
( ( 0. `  p )  e.  (
Base `  p )  /\  ( 1. `  p
)  e.  ( Base `  p ) )  <->  (  .0.  e.  B  /\  .1.  e.  B ) ) )
13 fveq2 5541 . . . . . . . 8  |-  ( p  =  K  ->  ( oc `  p )  =  ( oc `  K
) )
14 isopos.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
1513, 14syl6eqr 2346 . . . . . . 7  |-  ( p  =  K  ->  ( oc `  p )  = 
._|_  )
1615eqeq2d 2307 . . . . . 6  |-  ( p  =  K  ->  (
n  =  ( oc
`  p )  <->  n  =  ._|_  ) )
176eleq2d 2363 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( n `  x
)  e.  ( Base `  p )  <->  ( n `  x )  e.  B
) )
18 fveq2 5541 . . . . . . . . . . . . 13  |-  ( p  =  K  ->  ( le `  p )  =  ( le `  K
) )
19 isopos.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
2018, 19syl6eqr 2346 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( le `  p )  = 
.<_  )
2120breqd 4050 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
x ( le `  p ) y  <->  x  .<_  y ) )
2220breqd 4050 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
( n `  y
) ( le `  p ) ( n `
 x )  <->  ( n `  y )  .<_  ( n `
 x ) ) )
2321, 22imbi12d 311 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) )  <->  ( x  .<_  y  ->  ( n `  y )  .<_  ( n `
 x ) ) ) )
2417, 233anbi13d 1254 . . . . . . . . 9  |-  ( p  =  K  ->  (
( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  <->  ( (
n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) ) ) )
25 fveq2 5541 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( join `  p )  =  ( join `  K
) )
26 isopos.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
2725, 26syl6eqr 2346 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( join `  p )  = 
.\/  )
2827oveqd 5891 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( join `  p
) ( n `  x ) )  =  ( x  .\/  (
n `  x )
) )
2928, 10eqeq12d 2310 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( join `  p ) ( n `
 x ) )  =  ( 1. `  p )  <->  ( x  .\/  ( n `  x
) )  =  .1.  ) )
30 fveq2 5541 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( meet `  p )  =  ( meet `  K
) )
31 isopos.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
3230, 31syl6eqr 2346 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( meet `  p )  = 
./\  )
3332oveqd 5891 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( meet `  p
) ( n `  x ) )  =  ( x  ./\  (
n `  x )
) )
3433, 3eqeq12d 2310 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( meet `  p ) ( n `
 x ) )  =  ( 0. `  p )  <->  ( x  ./\  ( n `  x
) )  =  .0.  ) )
3524, 29, 343anbi123d 1252 . . . . . . . 8  |-  ( p  =  K  ->  (
( ( ( n `
 x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
366, 35raleqbidv 2761 . . . . . . 7  |-  ( p  =  K  ->  ( A. y  e.  ( Base `  p ) ( ( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
376, 36raleqbidv 2761 . . . . . 6  |-  ( p  =  K  ->  ( A. x  e.  ( Base `  p ) A. y  e.  ( Base `  p ) ( ( ( n `  x
)  e.  ( Base `  p )  /\  (
n `  ( n `  x ) )  =  x  /\  ( x ( le `  p
) y  ->  (
n `  y )
( le `  p
) ( n `  x ) ) )  /\  ( x (
join `  p )
( n `  x
) )  =  ( 1. `  p )  /\  ( x (
meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
3816, 37anbi12d 691 . . . . 5  |-  ( p  =  K  ->  (
( n  =  ( oc `  p )  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  ( (
( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) )
3938exbidv 1616 . . . 4  |-  ( p  =  K  ->  ( E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) )
4012, 39anbi12d 691 . . 3  |-  ( p  =  K  ->  (
( ( ( 0.
`  p )  e.  ( Base `  p
)  /\  ( 1. `  p )  e.  (
Base `  p )
)  /\  E. n
( n  =  ( oc `  p )  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) )  <->  ( (  .0.  e.  B  /\  .1.  e.  B )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) ) )
41 df-oposet 29988 . . 3  |-  OP  =  { p  e.  Poset  |  ( ( ( 0. `  p )  e.  (
Base `  p )  /\  ( 1. `  p
)  e.  ( Base `  p ) )  /\  E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) ) }
4240, 41elrab2 2938 . 2  |-  ( K  e.  OP  <->  ( K  e.  Poset  /\  ( (  .0.  e.  B  /\  .1.  e.  B )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) ) )
43 anass 630 . 2  |-  ( ( ( K  e.  Poset  /\  (  .0.  e.  B  /\  .1.  e.  B ) )  /\  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( K  e.  Poset  /\  ( (  .0.  e.  B  /\  .1.  e.  B
)  /\  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) ) )
44 3anass 938 . . . 4  |-  ( ( K  e.  Poset  /\  .0.  e.  B  /\  .1.  e.  B )  <->  ( K  e.  Poset  /\  (  .0.  e.  B  /\  .1.  e.  B ) ) )
4544bicomi 193 . . 3  |-  ( ( K  e.  Poset  /\  (  .0.  e.  B  /\  .1.  e.  B ) )  <->  ( K  e.  Poset  /\  .0.  e.  B  /\  .1.  e.  B
) )
46 fvex 5555 . . . . 5  |-  ( oc
`  K )  e. 
_V
4714, 46eqeltri 2366 . . . 4  |-  ._|_  e.  _V
48 fveq1 5540 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 x )  =  (  ._|_  `  x ) )
4948eleq1d 2362 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  x )  e.  B  <->  (  ._|_  `  x )  e.  B
) )
50 id 19 . . . . . . . . 9  |-  ( n  =  ._|_  ->  n  = 
._|_  )
5150, 48fveq12d 5547 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 ( n `  x ) )  =  (  ._|_  `  (  ._|_  `  x ) ) )
5251eqeq1d 2304 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  ( n `
 x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  x ) )  =  x ) )
53 fveq1 5540 . . . . . . . . 9  |-  ( n  =  ._|_  ->  ( n `
 y )  =  (  ._|_  `  y ) )
5453, 48breq12d 4052 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( ( n `  y ) 
.<_  ( n `  x
)  <->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )
5554imbi2d 307 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( x  .<_  y  ->  ( n `  y ) 
.<_  ( n `  x
) )  <->  ( x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) )
5649, 52, 553anbi123d 1252 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( ( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  <-> 
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) ) )
5748oveq2d 5890 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
.\/  ( n `  x ) )  =  ( x  .\/  (  ._|_  `  x ) ) )
5857eqeq1d 2304 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  .\/  ( n `
 x ) )  =  .1.  <->  ( x  .\/  (  ._|_  `  x
) )  =  .1.  ) )
5948oveq2d 5890 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
./\  ( n `  x ) )  =  ( x  ./\  (  ._|_  `  x ) ) )
6059eqeq1d 2304 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  ./\  ( n `  x ) )  =  .0.  <->  ( x  ./\  (  ._|_  `  x )
)  =  .0.  )
)
6156, 58, 603anbi123d 1252 . . . . 5  |-  ( n  =  ._|_  ->  ( ( ( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  ( ( ( 
._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
62612ralbidv 2598 . . . 4  |-  ( n  =  ._|_  ->  ( A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  A. x  e.  B  A. y  e.  B  ( ( (  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  (
x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x )
) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
6347, 62ceqsexv 2836 . . 3  |-  ( E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) )  <->  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) )
6445, 63anbi12i 678 . 2  |-  ( ( ( K  e.  Poset  /\  (  .0.  e.  B  /\  .1.  e.  B ) )  /\  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( ( K  e. 
Poset  /\  .0.  e.  B  /\  .1.  e.  B )  /\  A. x  e.  B  A. y  e.  B  ( ( ( 
._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
6542, 43, 643bitr2i 264 1  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  .0.  e.  B  /\  .1.  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   occoc 13232   Posetcpo 14090   joincjn 14094   meetcmee 14095   0.cp0 14159   1.cp1 14160   OPcops 29984
This theorem is referenced by:  isopiN  29993  opposet  29994  oposlem  29995  op0cl  29996  op1cl  29997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-oposet 29988
  Copyright terms: Public domain W3C validator