MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem2 Unicode version

Theorem isosctrlem2 20530
Description: Lemma for isosctr 20532. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
Assertion
Ref Expression
isosctrlem2  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )

Proof of Theorem isosctrlem2
StepHypRef Expression
1 ax-1cn 8981 . . . . . . . 8  |-  1  e.  CC
21a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  CC )
3 simpl1 960 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  A  e.  CC )
42, 3negsubd 9349 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  +  -u A )  =  ( 1  -  A ) )
5 1rp 10548 . . . . . . . 8  |-  1  e.  RR+
65a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  RR+ )
7 simpl3 962 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -.  1  =  A
)
8 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( abs `  A
)  =  1 )
92, 3, 2sub32d 9375 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  =  ( ( 1  -  1 )  -  A ) )
10 1m1e0 10000 . . . . . . . . . . . . . . . . 17  |-  ( 1  -  1 )  =  0
1110oveq1i 6030 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  1 )  -  A )  =  ( 0  -  A
)
12 df-neg 9226 . . . . . . . . . . . . . . . 16  |-  -u A  =  ( 0  -  A )
1311, 12eqtr4i 2410 . . . . . . . . . . . . . . 15  |-  ( ( 1  -  1 )  -  A )  = 
-u A
149, 13syl6eq 2435 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  =  -u A
)
151a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  1  e.  CC )
16 simp1 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  A  e.  CC )
1715, 16subcld 9343 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  A
)  e.  CC )
1817adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  CC )
19 subeq0 9259 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
201, 19mpan 652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
2120biimpd 199 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
( 1  -  A
)  =  0  -> 
1  =  A ) )
2221con3and 429 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  -.  1  =  A
)  ->  -.  (
1  -  A )  =  0 )
2322neneqad 2620 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  -.  1  =  A
)  ->  ( 1  -  A )  =/=  0 )
24233adant2 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  A
)  =/=  0 )
2524adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  =/=  0 )
2618, 25recrecd 9719 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  /  ( 1  -  A ) ) )  =  ( 1  -  A ) )
2715, 17, 24div2negd 9737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  /  -u ( 1  -  A
) )  =  ( 1  /  ( 1  -  A ) ) )
2827adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u 1  /  -u (
1  -  A ) )  =  ( 1  /  ( 1  -  A ) ) )
2916negcld 9330 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u A  e.  CC )
3029, 17, 24cjdivd 11955 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( ( * `  -u A
)  /  ( * `
 ( 1  -  A ) ) ) )
3116cjnegd 11943 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  -u A
)  =  -u (
* `  A )
)
32 fveq2 5668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
33 abs0 12017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( abs `  0 )  =  0
3432, 33syl6eq 2435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
35 eqtr2 2405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( abs `  A
)  =  1  /\  ( abs `  A
)  =  0 )  ->  1  =  0 )
3634, 35sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( abs `  A
)  =  1  /\  A  =  0 )  ->  1  =  0 )
37 ax-1ne0 8992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  1  =/=  0
38 id 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( 1  =/=  0  ->  1  =/=  0 )
3938neneqd 2566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( 1  =/=  0  ->  -.  1  =  0 )
4037, 39mp1i 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( abs `  A
)  =  1  /\  A  =  0 )  ->  -.  1  = 
0 )
4136, 40pm2.65da 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( abs `  A )  =  1  ->  -.  A  =  0 )
4241adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  ->  -.  A  =  0
)
43 df-ne 2552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A  =/=  0  <->  -.  A  =  0 )
44 oveq1 6027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
) ^ 2 )  =  ( 1 ^ 2 ) )
45 sq1 11403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( 1 ^ 2 )  =  1
4644, 45syl6eq 2435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
) ^ 2 )  =  1 )
4746adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( ( abs `  A
) ^ 2 )  =  1 )
48 absvalsq 12012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
4948adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
5047, 49eqtr3d 2421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
1  =  ( A  x.  ( * `  A ) ) )
51503adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  1  =  ( A  x.  ( * `  A
) ) )
5251oveq1d 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
1  /  A )  =  ( ( A  x.  ( * `  A ) )  /  A ) )
53 simp1 957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  A  e.  CC )
5453cjcld 11928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
* `  A )  e.  CC )
55 simp3 959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  A  =/=  0 )
5654, 53, 55divcan3d 9727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
( A  x.  (
* `  A )
)  /  A )  =  ( * `  A ) )
5752, 56eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
1  /  A )  =  ( * `  A ) )
5843, 57syl3an3br 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  A  =  0 )  ->  ( 1  /  A )  =  ( * `  A ) )
5942, 58mpd3an3 1280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( 1  /  A
)  =  ( * `
 A ) )
6059eqcomd 2392 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  A
)  =  ( 1  /  A ) )
61603adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  A
)  =  ( 1  /  A ) )
6261negeqd 9232 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u ( * `  A )  =  -u ( 1  /  A
) )
6331, 62eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  -u A
)  =  -u (
1  /  A ) )
6463oveq1d 6035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( * `  -u A )  /  (
* `  ( 1  -  A ) ) )  =  ( -u (
1  /  A )  /  ( * `  ( 1  -  A
) ) ) )
65 cjsub 11881 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( * `  (
1  -  A ) )  =  ( ( * `  1 )  -  ( * `  A ) ) )
661, 65mpan 652 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  e.  CC  ->  (
* `  ( 1  -  A ) )  =  ( ( * ` 
1 )  -  (
* `  A )
) )
67 1re 9023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  1  e.  RR
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A  e.  CC  ->  1  e.  RR )
6968cjred 11958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A  e.  CC  ->  (
* `  1 )  =  1 )
7069oveq1d 6035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  e.  CC  ->  (
( * `  1
)  -  ( * `
 A ) )  =  ( 1  -  ( * `  A
) ) )
7166, 70eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  e.  CC  ->  (
* `  ( 1  -  A ) )  =  ( 1  -  (
* `  A )
) )
7271adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  (
1  -  A ) )  =  ( 1  -  ( * `  A ) ) )
7360oveq2d 6036 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( 1  -  (
* `  A )
)  =  ( 1  -  ( 1  /  A ) ) )
7472, 73eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  (
1  -  A ) )  =  ( 1  -  ( 1  /  A ) ) )
75743adant3 977 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  (
1  -  A ) )  =  ( 1  -  ( 1  /  A ) ) )
7675oveq2d 6036 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( * `  (
1  -  A ) ) )  =  (
-u ( 1  /  A )  /  (
1  -  ( 1  /  A ) ) ) )
7730, 64, 763eqtrd 2423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u ( 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
78413ad2ant2 979 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  -.  A  =  0 )
7978neneqad 2620 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  A  =/=  0 )
801a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
1  e.  CC )
81 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
82 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  =/=  0 )
8380, 81, 82divnegd 9735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u ( 1  /  A
)  =  ( -u
1  /  A ) )
8483oveq1d 6035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u ( 1  /  A )  /  (
1  -  ( 1  /  A ) ) )  =  ( (
-u 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
8516, 79, 84syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( 1  -  (
1  /  A ) ) )  =  ( ( -u 1  /  A )  /  (
1  -  ( 1  /  A ) ) ) )
8615negcld 9330 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u 1  e.  CC )
8786, 16, 79divcld 9722 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  /  A )  e.  CC )
8816, 79reccld 9715 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  A
)  e.  CC )
8915, 88subcld 9343 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  (
1  /  A ) )  e.  CC )
9017, 24cjne0d 11935 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  (
1  -  A ) )  =/=  0 )
9175, 90eqnetrrd 2570 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  (
1  /  A ) )  =/=  0 )
9287, 89, 16, 91, 79divcan5d 9748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  ( -u 1  /  A
) )  /  ( A  x.  ( 1  -  ( 1  /  A ) ) ) )  =  ( (
-u 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
9386, 16, 79divcan2d 9724 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  ( -u 1  /  A ) )  =  -u 1
)
9416, 15, 88subdid 9421 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  -  ( 1  /  A ) ) )  =  ( ( A  x.  1 )  -  ( A  x.  ( 1  /  A
) ) ) )
9516mulid1d 9038 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  1 )  =  A )
9616, 79recidd 9717 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  /  A ) )  =  1 )
9795, 96oveq12d 6038 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  1 )  -  ( A  x.  ( 1  /  A ) ) )  =  ( A  -  1 ) )
9894, 97eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  -  ( 1  /  A ) ) )  =  ( A  -  1 ) )
9993, 98oveq12d 6038 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  ( -u 1  /  A
) )  /  ( A  x.  ( 1  -  ( 1  /  A ) ) ) )  =  ( -u
1  /  ( A  -  1 ) ) )
10085, 92, 993eqtr2d 2425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( 1  -  (
1  /  A ) ) )  =  (
-u 1  /  ( A  -  1 ) ) )
101 subcl 9237 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
102101negnegd 9334 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u -u ( A  - 
1 )  =  ( A  -  1 ) )
103 negsubdi2 9292 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
104103negeqd 9232 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u -u ( A  - 
1 )  =  -u ( 1  -  A
) )
105102, 104eqtr3d 2421 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  =  -u (
1  -  A ) )
10616, 15, 105syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  -  1 )  =  -u (
1  -  A ) )
107106oveq2d 6036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  / 
( A  -  1 ) )  =  (
-u 1  /  -u (
1  -  A ) ) )
10877, 100, 1073eqtrd 2423 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u
1  /  -u (
1  -  A ) ) )
109108adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u
1  /  -u (
1  -  A ) ) )
11029, 17, 24divcld 9722 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u A  / 
( 1  -  A
) )  e.  CC )
111110adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  CC )
112 simpr 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( -u A  /  ( 1  -  A ) ) )  =  0 )
113111, 112reim0bd 11932 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  RR )
114113cjred 11958 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u A  /  ( 1  -  A ) ) )
115114, 113eqeltrd 2461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  e.  RR )
116109, 115eqeltrrd 2462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u 1  /  -u (
1  -  A ) )  e.  RR )
11728, 116eqeltrrd 2462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  -  A ) )  e.  RR )
11817, 24recne0d 9716 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  (
1  -  A ) )  =/=  0 )
119118adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  -  A ) )  =/=  0 )
120117, 119rereccld 9773 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  /  ( 1  -  A ) ) )  e.  RR )
12126, 120eqeltrrd 2462 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  RR )
12267a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  RR )
123121, 122resubcld 9397 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  e.  RR )
12414, 123eqeltrrd 2462 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -u A  e.  RR )
1253, 124negrebd 9342 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  A  e.  RR )
126125absord 12145 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
127 eqeq1 2393 . . . . . . . . . . . . 13  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  A  <->  1  =  A ) )
128127biimpd 199 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  A  -> 
1  =  A ) )
129 eqeq1 2393 . . . . . . . . . . . . 13  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  -u A  <->  1  =  -u A ) )
130129biimpd 199 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  -u A  ->  1  =  -u A
) )
131128, 130orim12d 812 . . . . . . . . . . 11  |-  ( ( abs `  A )  =  1  ->  (
( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A )  -> 
( 1  =  A  \/  1  =  -u A ) ) )
1328, 126, 131sylc 58 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  =  A  \/  1  =  -u A ) )
133132ord 367 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -.  1  =  A  ->  1  =  -u A ) )
1347, 133mpd 15 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  =  -u A
)
135134, 6eqeltrrd 2462 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -u A  e.  RR+ )
1366, 135rpaddcld 10595 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  +  -u A )  e.  RR+ )
1374, 136eqeltrrd 2462 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  RR+ )
138137relogcld 20385 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( log `  (
1  -  A ) )  e.  RR )
139138reim0d 11957 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  0 )
140135, 137rpdivcld 10597 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  RR+ )
141140relogcld 20385 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( log `  ( -u A  /  ( 1  -  A ) ) )  e.  RR )
142141reim0d 11957 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  =  0 )
143139, 142eqtr4d 2422 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
14417, 24logcld 20335 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  -  A ) )  e.  CC )
145144adantr 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
1  -  A ) )  e.  CC )
146145imcld 11927 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  e.  RR )
147146recnd 9047 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  e.  CC )
148110adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  CC )
14916, 79negne0d 9341 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u A  =/=  0
)
15029, 17, 149, 24divne0d 9738 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u A  / 
( 1  -  A
) )  =/=  0
)
151150adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( -u A  /  (
1  -  A ) )  =/=  0 )
152148, 151logcld 20335 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  ( -u A  /  ( 1  -  A ) ) )  e.  CC )
153152imcld 11927 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  e.  RR )
154153recnd 9047 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  e.  CC )
155108fveq2d 5672 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( log `  ( -u 1  /  -u ( 1  -  A
) ) ) )
156155adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( log `  ( -u 1  /  -u ( 1  -  A
) ) ) )
157 logcj 20368 . . . . . . 7  |-  ( ( ( -u A  / 
( 1  -  A
) )  e.  CC  /\  ( Im `  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  ( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
158110, 157sylan 458 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
15917, 24reccld 9715 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  (
1  -  A ) )  e.  CC )
160159, 118logcld 20335 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC )
161160negnegd 9334 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u -u ( log `  (
1  /  ( 1  -  A ) ) )  =  ( log `  ( 1  /  (
1  -  A ) ) ) )
162 isosctrlem1 20529 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =/=  pi )
163 logrec 20528 . . . . . . . . . 10  |-  ( ( ( 1  -  A
)  e.  CC  /\  ( 1  -  A
)  =/=  0  /\  ( Im `  ( log `  ( 1  -  A ) ) )  =/=  pi )  -> 
( log `  (
1  -  A ) )  =  -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
16417, 24, 162, 163syl3anc 1184 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  -  A ) )  =  -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
165164negeqd 9232 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u ( log `  (
1  -  A ) )  =  -u -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
16627fveq2d 5672 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  ( log `  ( 1  /  ( 1  -  A ) ) ) )
167161, 165, 1663eqtr4rd 2430 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  -u ( log `  ( 1  -  A ) ) )
168167adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  -u ( log `  ( 1  -  A ) ) )
169156, 158, 1683eqtr3rd 2428 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  -u ( log `  (
1  -  A ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
170169fveq2d 5672 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  -u ( log `  ( 1  -  A ) ) )  =  ( Im `  ( * `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) ) )
171145imnegd 11942 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  -u ( log `  ( 1  -  A ) ) )  =  -u ( Im `  ( log `  ( 1  -  A ) ) ) )
172152imcjd 11937 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  (
* `  ( log `  ( -u A  / 
( 1  -  A
) ) ) ) )  =  -u (
Im `  ( log `  ( -u A  / 
( 1  -  A
) ) ) ) )
173170, 171, 1723eqtr3d 2427 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  -u ( Im `  ( log `  ( 1  -  A ) ) )  =  -u ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
174147, 154, 173neg11d 9355 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
175143, 174pm2.61dane 2628 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    - cmin 9223   -ucneg 9224    / cdiv 9609   2c2 9981   RR+crp 10544   ^cexp 11309   *ccj 11828   Imcim 11830   abscabs 11966   picpi 12596   logclog 20319
This theorem is referenced by:  isosctrlem3  20531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321
  Copyright terms: Public domain W3C validator