MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoval Unicode version

Theorem isoval 13910
Description: The inverse relation is a function, which is to say that every morphism has at most one inverse. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
isoval.n  |-  I  =  (  Iso  `  C
)
Assertion
Ref Expression
isoval  |-  ( ph  ->  ( X I Y )  =  dom  ( X N Y ) )

Proof of Theorem isoval
Dummy variables  x  c  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isoval.n . . . 4  |-  I  =  (  Iso  `  C
)
2 invfval.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
3 fveq2 5661 . . . . . . . 8  |-  ( c  =  C  ->  (Inv `  c )  =  (Inv
`  C ) )
4 invfval.n . . . . . . . 8  |-  N  =  (Inv `  C )
53, 4syl6eqr 2430 . . . . . . 7  |-  ( c  =  C  ->  (Inv `  c )  =  N )
65coeq2d 4968 . . . . . 6  |-  ( c  =  C  ->  (
( z  e.  _V  |->  dom  z )  o.  (Inv `  c ) )  =  ( ( z  e. 
_V  |->  dom  z )  o.  N ) )
7 df-iso 13895 . . . . . 6  |-  Iso  =  ( c  e.  Cat  |->  ( ( z  e. 
_V  |->  dom  z )  o.  (Inv `  c )
) )
8 funmpt 5422 . . . . . . 7  |-  Fun  (
z  e.  _V  |->  dom  z )
9 fvex 5675 . . . . . . . 8  |-  (Inv `  C )  e.  _V
104, 9eqeltri 2450 . . . . . . 7  |-  N  e. 
_V
11 cofunexg 5891 . . . . . . 7  |-  ( ( Fun  ( z  e. 
_V  |->  dom  z )  /\  N  e.  _V )  ->  ( ( z  e.  _V  |->  dom  z
)  o.  N )  e.  _V )
128, 10, 11mp2an 654 . . . . . 6  |-  ( ( z  e.  _V  |->  dom  z )  o.  N
)  e.  _V
136, 7, 12fvmpt 5738 . . . . 5  |-  ( C  e.  Cat  ->  (  Iso  `  C )  =  ( ( z  e. 
_V  |->  dom  z )  o.  N ) )
142, 13syl 16 . . . 4  |-  ( ph  ->  (  Iso  `  C
)  =  ( ( z  e.  _V  |->  dom  z )  o.  N
) )
151, 14syl5eq 2424 . . 3  |-  ( ph  ->  I  =  ( ( z  e.  _V  |->  dom  z )  o.  N
) )
1615oveqd 6030 . 2  |-  ( ph  ->  ( X I Y )  =  ( X ( ( z  e. 
_V  |->  dom  z )  o.  N ) Y ) )
17 eqid 2380 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  ( ( x (Sect `  C
) y )  i^i  `' ( y (Sect `  C ) x ) ) )  =  ( x  e.  B , 
y  e.  B  |->  ( ( x (Sect `  C ) y )  i^i  `' ( y (Sect `  C )
x ) ) )
18 ovex 6038 . . . . . . 7  |-  ( x (Sect `  C )
y )  e.  _V
1918inex1 4278 . . . . . 6  |-  ( ( x (Sect `  C
) y )  i^i  `' ( y (Sect `  C ) x ) )  e.  _V
2017, 19fnmpt2i 6352 . . . . 5  |-  ( x  e.  B ,  y  e.  B  |->  ( ( x (Sect `  C
) y )  i^i  `' ( y (Sect `  C ) x ) ) )  Fn  ( B  X.  B )
21 invfval.b . . . . . . 7  |-  B  =  ( Base `  C
)
22 invfval.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
23 invfval.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
24 eqid 2380 . . . . . . 7  |-  (Sect `  C )  =  (Sect `  C )
2521, 4, 2, 22, 23, 24invffval 13903 . . . . . 6  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x (Sect `  C
) y )  i^i  `' ( y (Sect `  C ) x ) ) ) )
2625fneq1d 5469 . . . . 5  |-  ( ph  ->  ( N  Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  Fn  ( B  X.  B ) ) )
2720, 26mpbiri 225 . . . 4  |-  ( ph  ->  N  Fn  ( B  X.  B ) )
28 opelxpi 4843 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
2922, 23, 28syl2anc 643 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
30 fvco2 5730 . . . 4  |-  ( ( N  Fn  ( B  X.  B )  /\  <. X ,  Y >.  e.  ( B  X.  B
) )  ->  (
( ( z  e. 
_V  |->  dom  z )  o.  N ) `  <. X ,  Y >. )  =  ( ( z  e.  _V  |->  dom  z
) `  ( N `  <. X ,  Y >. ) ) )
3127, 29, 30syl2anc 643 . . 3  |-  ( ph  ->  ( ( ( z  e.  _V  |->  dom  z
)  o.  N ) `
 <. X ,  Y >. )  =  ( ( z  e.  _V  |->  dom  z ) `  ( N `  <. X ,  Y >. ) ) )
32 df-ov 6016 . . 3  |-  ( X ( ( z  e. 
_V  |->  dom  z )  o.  N ) Y )  =  ( ( ( z  e.  _V  |->  dom  z )  o.  N
) `  <. X ,  Y >. )
33 ovex 6038 . . . . 5  |-  ( X N Y )  e. 
_V
34 dmeq 5003 . . . . . 6  |-  ( z  =  ( X N Y )  ->  dom  z  =  dom  ( X N Y ) )
35 eqid 2380 . . . . . 6  |-  ( z  e.  _V  |->  dom  z
)  =  ( z  e.  _V  |->  dom  z
)
3633dmex 5065 . . . . . 6  |-  dom  ( X N Y )  e. 
_V
3734, 35, 36fvmpt 5738 . . . . 5  |-  ( ( X N Y )  e.  _V  ->  (
( z  e.  _V  |->  dom  z ) `  ( X N Y ) )  =  dom  ( X N Y ) )
3833, 37ax-mp 8 . . . 4  |-  ( ( z  e.  _V  |->  dom  z ) `  ( X N Y ) )  =  dom  ( X N Y )
39 df-ov 6016 . . . . 5  |-  ( X N Y )  =  ( N `  <. X ,  Y >. )
4039fveq2i 5664 . . . 4  |-  ( ( z  e.  _V  |->  dom  z ) `  ( X N Y ) )  =  ( ( z  e.  _V  |->  dom  z
) `  ( N `  <. X ,  Y >. ) )
4138, 40eqtr3i 2402 . . 3  |-  dom  ( X N Y )  =  ( ( z  e. 
_V  |->  dom  z ) `  ( N `  <. X ,  Y >. )
)
4231, 32, 413eqtr4g 2437 . 2  |-  ( ph  ->  ( X ( ( z  e.  _V  |->  dom  z )  o.  N
) Y )  =  dom  ( X N Y ) )
4316, 42eqtrd 2412 1  |-  ( ph  ->  ( X I Y )  =  dom  ( X N Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   _Vcvv 2892    i^i cin 3255   <.cop 3753    e. cmpt 4200    X. cxp 4809   `'ccnv 4810   dom cdm 4811    o. ccom 4815   Fun wfun 5381    Fn wfn 5382   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   Basecbs 13389   Catccat 13809  Sectcsect 13890  Invcinv 13891    Iso ciso 13892
This theorem is referenced by:  inviso1  13911  invf  13913  invco  13916  isohom  13917  oppciso  13922  funciso  13991  ffthiso  14046  fuciso  14092  setciso  14166  catciso  14182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-inv 13894  df-iso 13895
  Copyright terms: Public domain W3C validator