MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe2 Structured version   Unicode version

Theorem isowe2 6062
Description: A weak form of isowe 6061 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  We  B  ->  R  We  A
) )
Distinct variable groups:    x, A    x, B    x, R    x, S    x, H

Proof of Theorem isowe2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  H  Isom  R ,  S  ( A ,  B ) )
2 imaeq2 5191 . . . . . . 7  |-  ( x  =  y  ->  ( H " x )  =  ( H " y
) )
32eleq1d 2501 . . . . . 6  |-  ( x  =  y  ->  (
( H " x
)  e.  _V  <->  ( H " y )  e.  _V ) )
43spv 1965 . . . . 5  |-  ( A. x ( H "
x )  e.  _V  ->  ( H " y
)  e.  _V )
54adantl 453 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( H "
y )  e.  _V )
61, 5isofrlem 6052 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  Fr  B  ->  R  Fr  A
) )
7 isosolem 6059 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
87adantr 452 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  Or  B  ->  R  Or  A
) )
96, 8anim12d 547 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( ( S  Fr  B  /\  S  Or  B )  ->  ( R  Fr  A  /\  R  Or  A )
) )
10 df-we 4535 . 2  |-  ( S  We  B  <->  ( S  Fr  B  /\  S  Or  B ) )
11 df-we 4535 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
129, 10, 113imtr4g 262 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  We  B  ->  R  We  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549    e. wcel 1725   _Vcvv 2948    Or wor 4494    Fr wfr 4530    We wwe 4532   "cima 4873    Isom wiso 5447
This theorem is referenced by:  fnwelem  6453  ltweuz  11293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455
  Copyright terms: Public domain W3C validator