MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf Unicode version

Theorem isperf 16898
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
isperf  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\  ( ( limPt `  J
) `  X )  =  X ) )

Proof of Theorem isperf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . 4  |-  ( j  =  J  ->  ( limPt `  j )  =  ( limPt `  J )
)
2 unieq 3852 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
3 lpfval.1 . . . . 5  |-  X  = 
U. J
42, 3syl6eqr 2346 . . . 4  |-  ( j  =  J  ->  U. j  =  X )
51, 4fveq12d 5547 . . 3  |-  ( j  =  J  ->  (
( limPt `  j ) `  U. j )  =  ( ( limPt `  J
) `  X )
)
65, 4eqeq12d 2310 . 2  |-  ( j  =  J  ->  (
( ( limPt `  j
) `  U. j )  =  U. j  <->  ( ( limPt `  J ) `  X )  =  X ) )
7 df-perf 16885 . 2  |- Perf  =  {
j  e.  Top  | 
( ( limPt `  j
) `  U. j )  =  U. j }
86, 7elrab2 2938 1  |-  ( J  e. Perf 
<->  ( J  e.  Top  /\  ( ( limPt `  J
) `  X )  =  X ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   U.cuni 3843   ` cfv 5271   Topctop 16647   limPtclp 16882  Perfcperf 16883
This theorem is referenced by:  isperf2  16899  perflp  16901  perftop  16903  restperf  16930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-perf 16885
  Copyright terms: Public domain W3C validator