MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Unicode version

Theorem ispgp 15155
Description: A group is a  P-group if every element has some power of  P as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1  |-  X  =  ( Base `  G
)
ispgp.2  |-  O  =  ( od `  G
)
Assertion
Ref Expression
ispgp  |-  ( P pGrp 
G  <->  ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
Distinct variable groups:    x, n, G    P, n, x    x, X
Allowed substitution hints:    O( x, n)    X( n)

Proof of Theorem ispgp
Dummy variables  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  g  =  G )
21fveq2d 5674 . . . . 5  |-  ( ( p  =  P  /\  g  =  G )  ->  ( Base `  g
)  =  ( Base `  G ) )
3 ispgp.1 . . . . 5  |-  X  =  ( Base `  G
)
42, 3syl6eqr 2439 . . . 4  |-  ( ( p  =  P  /\  g  =  G )  ->  ( Base `  g
)  =  X )
51fveq2d 5674 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  ( od `  g
)  =  ( od
`  G ) )
6 ispgp.2 . . . . . . . 8  |-  O  =  ( od `  G
)
75, 6syl6eqr 2439 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  ( od `  g
)  =  O )
87fveq1d 5672 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( od `  g ) `  x
)  =  ( O `
 x ) )
9 simpl 444 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  p  =  P )
109oveq1d 6037 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  ( p ^ n
)  =  ( P ^ n ) )
118, 10eqeq12d 2403 . . . . 5  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( ( od
`  g ) `  x )  =  ( p ^ n )  <-> 
( O `  x
)  =  ( P ^ n ) ) )
1211rexbidv 2672 . . . 4  |-  ( ( p  =  P  /\  g  =  G )  ->  ( E. n  e. 
NN0  ( ( od
`  g ) `  x )  =  ( p ^ n )  <->  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
134, 12raleqbidv 2861 . . 3  |-  ( ( p  =  P  /\  g  =  G )  ->  ( A. x  e.  ( Base `  g
) E. n  e. 
NN0  ( ( od
`  g ) `  x )  =  ( p ^ n )  <->  A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
14 df-pgp 15098 . . 3  |- pGrp  =  { <. p ,  g >.  |  ( ( p  e.  Prime  /\  g  e.  Grp )  /\  A. x  e.  ( Base `  g ) E. n  e.  NN0  ( ( od
`  g ) `  x )  =  ( p ^ n ) ) }
1513, 14brab2ga 4893 . 2  |-  ( P pGrp 
G  <->  ( ( P  e.  Prime  /\  G  e. 
Grp )  /\  A. x  e.  X  E. n  e.  NN0  ( O `
 x )  =  ( P ^ n
) ) )
16 df-3an 938 . 2  |-  ( ( P  e.  Prime  /\  G  e.  Grp  /\  A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^ n ) )  <->  ( ( P  e.  Prime  /\  G  e. 
Grp )  /\  A. x  e.  X  E. n  e.  NN0  ( O `
 x )  =  ( P ^ n
) ) )
1715, 16bitr4i 244 1  |-  ( P pGrp 
G  <->  ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   NN0cn0 10155   ^cexp 11311   Primecprime 13008   Basecbs 13398   Grpcgrp 14614   odcod 15092   pGrp cpgp 15094
This theorem is referenced by:  pgpprm  15156  pgpgrp  15157  pgpfi1  15158  subgpgp  15160  pgpfi  15168
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-xp 4826  df-iota 5360  df-fv 5404  df-ov 6025  df-pgp 15098
  Copyright terms: Public domain W3C validator