MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Unicode version

Theorem isphtpc 19024
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc  |-  ( F (  ~=ph  `  J ) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) )

Proof of Theorem isphtpc
Dummy variables  f 
g  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4216 . . 3  |-  ( F (  ~=ph  `  J ) G  <->  <. F ,  G >.  e.  (  ~=ph  `  J
) )
2 df-phtpc 19022 . . . . 5  |-  ~=ph  =  ( j  e.  Top  |->  {
<. f ,  g >.  |  ( { f ,  g }  C_  ( II  Cn  j
)  /\  ( f
( PHtpy `  j )
g )  =/=  (/) ) } )
32dmmptss 5369 . . . 4  |-  dom  ~=ph  C_  Top
4 elfvdm 5760 . . . 4  |-  ( <. F ,  G >.  e.  (  ~=ph  `  J )  ->  J  e.  dom  ~=ph 
)
53, 4sseldi 3348 . . 3  |-  ( <. F ,  G >.  e.  (  ~=ph  `  J )  ->  J  e.  Top )
61, 5sylbi 189 . 2  |-  ( F (  ~=ph  `  J ) G  ->  J  e.  Top )
7 cntop2 17310 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
873ad2ant1 979 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) )  ->  J  e. 
Top )
9 oveq2 6092 . . . . . . . . 9  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
109sseq2d 3378 . . . . . . . 8  |-  ( j  =  J  ->  ( { f ,  g }  C_  ( II  Cn  j )  <->  { f ,  g }  C_  ( II  Cn  J
) ) )
11 vex 2961 . . . . . . . . 9  |-  f  e. 
_V
12 vex 2961 . . . . . . . . 9  |-  g  e. 
_V
1311, 12prss 3954 . . . . . . . 8  |-  ( ( f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  <->  { f ,  g }  C_  ( II  Cn  J
) )
1410, 13syl6bbr 256 . . . . . . 7  |-  ( j  =  J  ->  ( { f ,  g }  C_  ( II  Cn  j )  <->  ( f  e.  ( II  Cn  J
)  /\  g  e.  ( II  Cn  J
) ) ) )
15 fveq2 5731 . . . . . . . . 9  |-  ( j  =  J  ->  ( PHtpy `  j )  =  ( PHtpy `  J )
)
1615oveqd 6101 . . . . . . . 8  |-  ( j  =  J  ->  (
f ( PHtpy `  j
) g )  =  ( f ( PHtpy `  J ) g ) )
1716neeq1d 2616 . . . . . . 7  |-  ( j  =  J  ->  (
( f ( PHtpy `  j ) g )  =/=  (/)  <->  ( f (
PHtpy `  J ) g )  =/=  (/) ) )
1814, 17anbi12d 693 . . . . . 6  |-  ( j  =  J  ->  (
( { f ,  g }  C_  (
II  Cn  j )  /\  ( f ( PHtpy `  j ) g )  =/=  (/) )  <->  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) ) )
1918opabbidv 4274 . . . . 5  |-  ( j  =  J  ->  { <. f ,  g >.  |  ( { f ,  g }  C_  ( II  Cn  j )  /\  (
f ( PHtpy `  j
) g )  =/=  (/) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } )
20 ovex 6109 . . . . . . 7  |-  ( II 
Cn  J )  e. 
_V
2120, 20xpex 4993 . . . . . 6  |-  ( ( II  Cn  J )  X.  ( II  Cn  J ) )  e. 
_V
22 opabssxp 4953 . . . . . 6  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) } 
C_  ( ( II 
Cn  J )  X.  ( II  Cn  J
) )
2321, 22ssexi 4351 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }  e.  _V
2419, 2, 23fvmpt 5809 . . . 4  |-  ( J  e.  Top  ->  (  ~=ph  `  J )  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } )
2524breqd 4226 . . 3  |-  ( J  e.  Top  ->  ( F (  ~=ph  `  J
) G  <->  F { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } G ) )
26 oveq12 6093 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( PHtpy `  J ) g )  =  ( F (
PHtpy `  J ) G ) )
2726neeq1d 2616 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f (
PHtpy `  J ) g )  =/=  (/)  <->  ( F
( PHtpy `  J ) G )  =/=  (/) ) )
28 eqid 2438 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }
2927, 28brab2ga 4954 . . . 4  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) } G  <->  ( ( F  e.  ( II  Cn  J )  /\  G  e.  ( II  Cn  J ) )  /\  ( F ( PHtpy `  J ) G )  =/=  (/) ) )
30 df-3an 939 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) )  <->  ( ( F  e.  ( II  Cn  J )  /\  G  e.  ( II  Cn  J
) )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) ) )
3129, 30bitr4i 245 . . 3  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) } G  <->  ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) ) )
3225, 31syl6bb 254 . 2  |-  ( J  e.  Top  ->  ( F (  ~=ph  `  J
) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) ) )
336, 8, 32pm5.21nii 344 1  |-  ( F (  ~=ph  `  J ) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601    C_ wss 3322   (/)c0 3630   {cpr 3817   <.cop 3819   class class class wbr 4215   {copab 4268    X. cxp 4879   dom cdm 4881   ` cfv 5457  (class class class)co 6084   Topctop 16963    Cn ccn 17293   IIcii 18910   PHtpycphtpy 18998    ~=ph cphtpc 18999
This theorem is referenced by:  phtpcer  19025  phtpc01  19026  reparpht  19028  phtpcco2  19029  pcohtpylem  19049  pcohtpy  19050  pcorevlem  19056  pi1blem  19069  txsconlem  24932  txscon  24933  cvxscon  24935  cvmliftpht  25010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-map 7023  df-top 16968  df-topon 16971  df-cn 17296  df-phtpc 19022
  Copyright terms: Public domain W3C validator