MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposi Unicode version

Theorem isposi 14090
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
isposi.k  |-  K  e. 
_V
isposi.b  |-  B  =  ( Base `  K
)
isposi.l  |-  .<_  =  ( le `  K )
isposi.1  |-  ( x  e.  B  ->  x  .<_  x )
isposi.2  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
isposi.3  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
Assertion
Ref Expression
isposi  |-  K  e. 
Poset
Distinct variable groups:    x, y,
z, B    x,  .<_ , y, z
Allowed substitution hints:    K( x, y, z)

Proof of Theorem isposi
StepHypRef Expression
1 isposi.k . 2  |-  K  e. 
_V
2 isposi.1 . . . . 5  |-  ( x  e.  B  ->  x  .<_  x )
323ad2ant1 976 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  x  .<_  x )
4 isposi.2 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
543adant3 975 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) )
6 isposi.3 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
73, 5, 63jca 1132 . . 3  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
87rgen3 2640 . 2  |-  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )
9 isposi.b . . 3  |-  B  =  ( Base `  K
)
10 isposi.l . . 3  |-  .<_  =  ( le `  K )
119, 10ispos 14081 . 2  |-  ( K  e.  Poset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
121, 8, 11mpbir2an 886 1  |-  K  e. 
Poset
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   Posetcpo 14074
This theorem is referenced by:  isposix  14091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-poset 14080
  Copyright terms: Public domain W3C validator