MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isppw2 Unicode version

Theorem isppw2 20465
Description: Two ways to say that  A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
isppw2  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^
k ) ) )
Distinct variable group:    k, p, A

Proof of Theorem isppw2
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 isppw 20464 . 2  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E! q  e.  Prime  q 
||  A ) )
2 reu6 3030 . . 3  |-  ( E! q  e.  Prime  q  ||  A  <->  E. p  e.  Prime  A. q  e.  Prime  (
q  ||  A  <->  q  =  p ) )
3 equid 1676 . . . . . . . . 9  |-  p  =  p
4 breq1 4107 . . . . . . . . . . . 12  |-  ( q  =  p  ->  (
q  ||  A  <->  p  ||  A
) )
5 equequ1 1684 . . . . . . . . . . . 12  |-  ( q  =  p  ->  (
q  =  p  <->  p  =  p ) )
64, 5bibi12d 312 . . . . . . . . . . 11  |-  ( q  =  p  ->  (
( q  ||  A  <->  q  =  p )  <->  ( p  ||  A  <->  p  =  p
) ) )
76rspcva 2958 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A. q  e.  Prime  ( q 
||  A  <->  q  =  p ) )  -> 
( p  ||  A  <->  p  =  p ) )
87adantll 694 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p  ||  A  <->  p  =  p ) )
93, 8mpbiri 224 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  p  ||  A )
10 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  p  e.  Prime )
11 simpll 730 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  e.  NN )
12 pcelnn 13019 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  e.  NN  <->  p  ||  A
) )
1310, 11, 12syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( ( p  pCnt  A )  e.  NN  <->  p  ||  A
) )
149, 13mpbird 223 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p  pCnt  A
)  e.  NN )
15 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  q  =  p )
1615oveq1d 5960 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( p  pCnt  A )
)
17 simpllr 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  p  e.  Prime )
18 pccl 12999 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1918ancoms 439 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
2019ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  A )  e.  NN0 )
2120nn0zd 10207 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  A )  e.  ZZ )
22 pcid 13022 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
p  pCnt  ( p ^ ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
2317, 21, 22syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  ( p ^ (
p  pCnt  A )
) )  =  ( p  pCnt  A )
)
2416, 23eqtr4d 2393 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( p  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
2515oveq1d 5960 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  ( p ^ (
p  pCnt  A )
) )  =  ( p  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
2624, 25eqtr4d 2393 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
27 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  ||  A  <->  q  =  p ) )
2827notbid 285 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( -.  q  ||  A  <->  -.  q  =  p ) )
2928biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  -.  q  ||  A )
30 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  q  e.  Prime )
31 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  A  e.  NN )
32 pceq0 13020 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Prime  /\  A  e.  NN )  ->  (
( q  pCnt  A
)  =  0  <->  -.  q  ||  A ) )
3330, 31, 32syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
( q  pCnt  A
)  =  0  <->  -.  q  ||  A ) )
3429, 33mpbird 223 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  A )  =  0 )
35 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  q  e.  Prime )
36 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  p  e.  Prime )
3719adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( p  pCnt  A )  e.  NN0 )
38 prmdvdsexpr 12892 . . . . . . . . . . . . . . . 16  |-  ( ( q  e.  Prime  /\  p  e.  Prime  /\  ( p  pCnt  A )  e.  NN0 )  ->  ( q  ||  ( p ^ (
p  pCnt  A )
)  ->  q  =  p ) )
3935, 36, 37, 38syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  ||  ( p ^ (
p  pCnt  A )
)  ->  q  =  p ) )
4039con3and 428 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  -.  q  ||  ( p ^
( p  pCnt  A
) ) )
41 prmnn 12858 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e.  NN )
4241adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
4342, 19nnexpcld 11359 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN )
4443ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
p ^ ( p 
pCnt  A ) )  e.  NN )
45 pceq0 13020 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Prime  /\  (
p ^ ( p 
pCnt  A ) )  e.  NN )  ->  (
( q  pCnt  (
p ^ ( p 
pCnt  A ) ) )  =  0  <->  -.  q  ||  ( p ^ (
p  pCnt  A )
) ) )
4630, 44, 45syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
( q  pCnt  (
p ^ ( p 
pCnt  A ) ) )  =  0  <->  -.  q  ||  ( p ^ (
p  pCnt  A )
) ) )
4740, 46mpbird 223 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  ( p ^ ( p  pCnt  A ) ) )  =  0 )
4834, 47eqtr4d 2393 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) )
4926, 48pm2.61dan 766 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
5049expr 598 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( ( q 
||  A  <->  q  =  p )  ->  (
q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) ) )
5150ralimdva 2697 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  ->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) ) )
5251imp 418 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) )
53 nnnn0 10064 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  NN0 )
5453ad2antrr 706 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  e.  NN0 )
5543adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN )
5655nnnn0d 10110 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN0 )
57 pc11 13029 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  ( p ^ (
p  pCnt  A )
)  e.  NN0 )  ->  ( A  =  ( p ^ ( p 
pCnt  A ) )  <->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q 
pCnt  ( p ^
( p  pCnt  A
) ) ) ) )
5854, 56, 57syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( A  =  ( p ^ ( p 
pCnt  A ) )  <->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q 
pCnt  ( p ^
( p  pCnt  A
) ) ) ) )
5952, 58mpbird 223 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  =  ( p ^ ( p  pCnt  A ) ) )
60 oveq2 5953 . . . . . . . . 9  |-  ( k  =  ( p  pCnt  A )  ->  ( p ^ k )  =  ( p ^ (
p  pCnt  A )
) )
6160eqeq2d 2369 . . . . . . . 8  |-  ( k  =  ( p  pCnt  A )  ->  ( A  =  ( p ^
k )  <->  A  =  ( p ^ (
p  pCnt  A )
) ) )
6261rspcev 2960 . . . . . . 7  |-  ( ( ( p  pCnt  A
)  e.  NN  /\  A  =  ( p ^ ( p  pCnt  A ) ) )  ->  E. k  e.  NN  A  =  ( p ^ k ) )
6314, 59, 62syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  E. k  e.  NN  A  =  ( p ^ k ) )
6463ex 423 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  ->  E. k  e.  NN  A  =  ( p ^ k ) ) )
65 prmdvdsexpb 12891 . . . . . . . . . . 11  |-  ( ( q  e.  Prime  /\  p  e.  Prime  /\  k  e.  NN )  ->  ( q 
||  ( p ^
k )  <->  q  =  p ) )
66653coml 1158 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN  /\  q  e. 
Prime )  ->  ( q 
||  ( p ^
k )  <->  q  =  p ) )
67663expa 1151 . . . . . . . . 9  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  q  e.  Prime )  ->  ( q  ||  ( p ^ k
)  <->  q  =  p ) )
6867ralrimiva 2702 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  A. q  e.  Prime  ( q  ||  ( p ^ k
)  <->  q  =  p ) )
6968adantll 694 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A. q  e.  Prime  ( q  ||  ( p ^ k )  <->  q  =  p ) )
70 breq2 4108 . . . . . . . . 9  |-  ( A  =  ( p ^
k )  ->  (
q  ||  A  <->  q  ||  ( p ^ k
) ) )
7170bibi1d 310 . . . . . . . 8  |-  ( A  =  ( p ^
k )  ->  (
( q  ||  A  <->  q  =  p )  <->  ( q  ||  ( p ^ k
)  <->  q  =  p ) ) )
7271ralbidv 2639 . . . . . . 7  |-  ( A  =  ( p ^
k )  ->  ( A. q  e.  Prime  ( q  ||  A  <->  q  =  p )  <->  A. q  e.  Prime  ( q  ||  ( p ^ k
)  <->  q  =  p ) ) )
7369, 72syl5ibrcom 213 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( A  =  ( p ^ k
)  ->  A. q  e.  Prime  ( q  ||  A 
<->  q  =  p ) ) )
7473rexlimdva 2743 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( E. k  e.  NN  A  =  ( p ^ k )  ->  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) ) )
7564, 74impbid 183 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  <->  E. k  e.  NN  A  =  ( p ^ k ) ) )
7675rexbidva 2636 . . 3  |-  ( A  e.  NN  ->  ( E. p  e.  Prime  A. q  e.  Prime  (
q  ||  A  <->  q  =  p )  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^ k ) ) )
772, 76syl5bb 248 . 2  |-  ( A  e.  NN  ->  ( E! q  e.  Prime  q 
||  A  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^ k ) ) )
781, 77bitrd 244 1  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^
k ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620   E!wreu 2621   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   0cc0 8827   NNcn 9836   NN0cn0 10057   ZZcz 10116   ^cexp 11197    || cdivides 12628   Primecprime 12855    pCnt cpc 12986  Λcvma 20441
This theorem is referenced by:  vmacl  20468  efvmacl  20470  vma1  20516  vmalelog  20556  fsumvma  20564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ioc 10753  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-fac 11382  df-bc 11409  df-hash 11431  df-shft 11658  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-limsup 12041  df-clim 12058  df-rlim 12059  df-sum 12256  df-ef 12446  df-sin 12448  df-cos 12449  df-pi 12451  df-dvds 12629  df-gcd 12783  df-prm 12856  df-pc 12987  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-lp 16974  df-perf 16975  df-cn 17063  df-cnp 17064  df-haus 17149  df-tx 17363  df-hmeo 17552  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-xms 17987  df-ms 17988  df-tms 17989  df-cncf 18485  df-limc 19320  df-dv 19321  df-log 20021  df-vma 20447
  Copyright terms: Public domain W3C validator