MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isppw2 Unicode version

Theorem isppw2 20851
Description: Two ways to say that  A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
isppw2  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^
k ) ) )
Distinct variable group:    k, p, A

Proof of Theorem isppw2
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 isppw 20850 . 2  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E! q  e.  Prime  q 
||  A ) )
2 reu6 3083 . . 3  |-  ( E! q  e.  Prime  q  ||  A  <->  E. p  e.  Prime  A. q  e.  Prime  (
q  ||  A  <->  q  =  p ) )
3 equid 1684 . . . . . . . . 9  |-  p  =  p
4 breq1 4175 . . . . . . . . . . . 12  |-  ( q  =  p  ->  (
q  ||  A  <->  p  ||  A
) )
5 equequ1 1692 . . . . . . . . . . . 12  |-  ( q  =  p  ->  (
q  =  p  <->  p  =  p ) )
64, 5bibi12d 313 . . . . . . . . . . 11  |-  ( q  =  p  ->  (
( q  ||  A  <->  q  =  p )  <->  ( p  ||  A  <->  p  =  p
) ) )
76rspcva 3010 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A. q  e.  Prime  ( q 
||  A  <->  q  =  p ) )  -> 
( p  ||  A  <->  p  =  p ) )
87adantll 695 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p  ||  A  <->  p  =  p ) )
93, 8mpbiri 225 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  p  ||  A )
10 simplr 732 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  p  e.  Prime )
11 simpll 731 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  e.  NN )
12 pcelnn 13198 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  e.  NN  <->  p  ||  A
) )
1310, 11, 12syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( ( p  pCnt  A )  e.  NN  <->  p  ||  A
) )
149, 13mpbird 224 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p  pCnt  A
)  e.  NN )
15 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  q  =  p )
1615oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( p  pCnt  A )
)
17 simpllr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  p  e.  Prime )
18 pccl 13178 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1918ancoms 440 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
2019ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  A )  e.  NN0 )
2120nn0zd 10329 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  A )  e.  ZZ )
22 pcid 13201 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
p  pCnt  ( p ^ ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
2317, 21, 22syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( p  pCnt  ( p ^ (
p  pCnt  A )
) )  =  ( p  pCnt  A )
)
2416, 23eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( p  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
2515oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  ( p ^ (
p  pCnt  A )
) )  =  ( p  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
2624, 25eqtr4d 2439 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  q  =  p )  ->  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
27 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  ||  A  <->  q  =  p ) )
2827notbid 286 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( -.  q  ||  A  <->  -.  q  =  p ) )
2928biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  -.  q  ||  A )
30 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  q  e.  Prime )
31 simplll 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  A  e.  NN )
32 pceq0 13199 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Prime  /\  A  e.  NN )  ->  (
( q  pCnt  A
)  =  0  <->  -.  q  ||  A ) )
3330, 31, 32syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
( q  pCnt  A
)  =  0  <->  -.  q  ||  A ) )
3429, 33mpbird 224 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  A )  =  0 )
35 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  q  e.  Prime )
36 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  p  e.  Prime )
3719adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( p  pCnt  A )  e.  NN0 )
38 prmdvdsexpr 13071 . . . . . . . . . . . . . . . 16  |-  ( ( q  e.  Prime  /\  p  e.  Prime  /\  ( p  pCnt  A )  e.  NN0 )  ->  ( q  ||  ( p ^ (
p  pCnt  A )
)  ->  q  =  p ) )
3935, 36, 37, 38syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  ||  ( p ^ (
p  pCnt  A )
)  ->  q  =  p ) )
4039con3and 429 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  -.  q  ||  ( p ^
( p  pCnt  A
) ) )
41 prmnn 13037 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e.  NN )
4241adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
4342, 19nnexpcld 11499 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN )
4443ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
p ^ ( p 
pCnt  A ) )  e.  NN )
45 pceq0 13199 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Prime  /\  (
p ^ ( p 
pCnt  A ) )  e.  NN )  ->  (
( q  pCnt  (
p ^ ( p 
pCnt  A ) ) )  =  0  <->  -.  q  ||  ( p ^ (
p  pCnt  A )
) ) )
4630, 44, 45syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
( q  pCnt  (
p ^ ( p 
pCnt  A ) ) )  =  0  <->  -.  q  ||  ( p ^ (
p  pCnt  A )
) ) )
4740, 46mpbird 224 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  ( p ^ ( p  pCnt  A ) ) )  =  0 )
4834, 47eqtr4d 2439 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  p  e. 
Prime )  /\  (
q  e.  Prime  /\  (
q  ||  A  <->  q  =  p ) ) )  /\  -.  q  =  p )  ->  (
q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) )
4926, 48pm2.61dan 767 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  ( q  e.  Prime  /\  ( q  ||  A  <->  q  =  p ) ) )  ->  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p  pCnt  A ) ) ) )
5049expr 599 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( ( q 
||  A  <->  q  =  p )  ->  (
q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) ) )
5150ralimdva 2744 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  ->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) ) )
5251imp 419 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q  pCnt  ( p ^ ( p 
pCnt  A ) ) ) )
53 nnnn0 10184 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  NN0 )
5453ad2antrr 707 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  e.  NN0 )
5543adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN )
5655nnnn0d 10230 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( p ^ (
p  pCnt  A )
)  e.  NN0 )
57 pc11 13208 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  ( p ^ (
p  pCnt  A )
)  e.  NN0 )  ->  ( A  =  ( p ^ ( p 
pCnt  A ) )  <->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q 
pCnt  ( p ^
( p  pCnt  A
) ) ) ) )
5854, 56, 57syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  -> 
( A  =  ( p ^ ( p 
pCnt  A ) )  <->  A. q  e.  Prime  ( q  pCnt  A )  =  ( q 
pCnt  ( p ^
( p  pCnt  A
) ) ) ) )
5952, 58mpbird 224 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  A  =  ( p ^ ( p  pCnt  A ) ) )
60 oveq2 6048 . . . . . . . . 9  |-  ( k  =  ( p  pCnt  A )  ->  ( p ^ k )  =  ( p ^ (
p  pCnt  A )
) )
6160eqeq2d 2415 . . . . . . . 8  |-  ( k  =  ( p  pCnt  A )  ->  ( A  =  ( p ^
k )  <->  A  =  ( p ^ (
p  pCnt  A )
) ) )
6261rspcev 3012 . . . . . . 7  |-  ( ( ( p  pCnt  A
)  e.  NN  /\  A  =  ( p ^ ( p  pCnt  A ) ) )  ->  E. k  e.  NN  A  =  ( p ^ k ) )
6314, 59, 62syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) )  ->  E. k  e.  NN  A  =  ( p ^ k ) )
6463ex 424 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  ->  E. k  e.  NN  A  =  ( p ^ k ) ) )
65 prmdvdsexpb 13070 . . . . . . . . . . 11  |-  ( ( q  e.  Prime  /\  p  e.  Prime  /\  k  e.  NN )  ->  ( q 
||  ( p ^
k )  <->  q  =  p ) )
66653coml 1160 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN  /\  q  e. 
Prime )  ->  ( q 
||  ( p ^
k )  <->  q  =  p ) )
67663expa 1153 . . . . . . . . 9  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  q  e.  Prime )  ->  ( q  ||  ( p ^ k
)  <->  q  =  p ) )
6867ralrimiva 2749 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  A. q  e.  Prime  ( q  ||  ( p ^ k
)  <->  q  =  p ) )
6968adantll 695 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A. q  e.  Prime  ( q  ||  ( p ^ k )  <->  q  =  p ) )
70 breq2 4176 . . . . . . . . 9  |-  ( A  =  ( p ^
k )  ->  (
q  ||  A  <->  q  ||  ( p ^ k
) ) )
7170bibi1d 311 . . . . . . . 8  |-  ( A  =  ( p ^
k )  ->  (
( q  ||  A  <->  q  =  p )  <->  ( q  ||  ( p ^ k
)  <->  q  =  p ) ) )
7271ralbidv 2686 . . . . . . 7  |-  ( A  =  ( p ^
k )  ->  ( A. q  e.  Prime  ( q  ||  A  <->  q  =  p )  <->  A. q  e.  Prime  ( q  ||  ( p ^ k
)  <->  q  =  p ) ) )
7369, 72syl5ibrcom 214 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( A  =  ( p ^ k
)  ->  A. q  e.  Prime  ( q  ||  A 
<->  q  =  p ) ) )
7473rexlimdva 2790 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( E. k  e.  NN  A  =  ( p ^ k )  ->  A. q  e.  Prime  ( q  ||  A  <->  q  =  p ) ) )
7564, 74impbid 184 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A. q  e. 
Prime  ( q  ||  A  <->  q  =  p )  <->  E. k  e.  NN  A  =  ( p ^ k ) ) )
7675rexbidva 2683 . . 3  |-  ( A  e.  NN  ->  ( E. p  e.  Prime  A. q  e.  Prime  (
q  ||  A  <->  q  =  p )  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^ k ) ) )
772, 76syl5bb 249 . 2  |-  ( A  e.  NN  ->  ( E! q  e.  Prime  q 
||  A  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^ k ) ) )
781, 77bitrd 245 1  |-  ( A  e.  NN  ->  (
(Λ `  A )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^
k ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   E!wreu 2668   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   0cc0 8946   NNcn 9956   NN0cn0 10177   ZZcz 10238   ^cexp 11337    || cdivides 12807   Primecprime 13034    pCnt cpc 13165  Λcvma 20827
This theorem is referenced by:  vmacl  20854  efvmacl  20856  vma1  20902  vmalelog  20942  fsumvma  20950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-vma 20833
  Copyright terms: Public domain W3C validator