Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispridl2 Unicode version

Theorem ispridl2 26341
Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 26373 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ispridl2.1  |-  G  =  ( 1st `  R
)
ispridl2.2  |-  H  =  ( 2nd `  R
)
ispridl2.3  |-  X  =  ran  G
Assertion
Ref Expression
ispridl2  |-  ( ( R  e.  RingOps  /\  ( P  e.  ( Idl `  R )  /\  P  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )  ->  P  e.  ( PrIdl `  R ) )
Distinct variable groups:    R, a,
b    P, a, b    X, a, b
Allowed substitution hints:    G( a, b)    H( a, b)

Proof of Theorem ispridl2
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridl2.1 . . . . . . . . . . . . . 14  |-  G  =  ( 1st `  R
)
2 ispridl2.3 . . . . . . . . . . . . . 14  |-  X  =  ran  G
31, 2idlss 26319 . . . . . . . . . . . . 13  |-  ( ( R  e.  RingOps  /\  r  e.  ( Idl `  R
) )  ->  r  C_  X )
4 ssralv 3352 . . . . . . . . . . . . 13  |-  ( r 
C_  X  ->  ( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. a  e.  r  A. b  e.  X  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
53, 4syl 16 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  r  e.  ( Idl `  R
) )  ->  ( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. a  e.  r  A. b  e.  X  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
65adantrr 698 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  (
r  e.  ( Idl `  R )  /\  s  e.  ( Idl `  R
) ) )  -> 
( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P ) )  ->  A. a  e.  r  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) ) )
71, 2idlss 26319 . . . . . . . . . . . . 13  |-  ( ( R  e.  RingOps  /\  s  e.  ( Idl `  R
) )  ->  s  C_  X )
8 ssralv 3352 . . . . . . . . . . . . . 14  |-  ( s 
C_  X  ->  ( A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. b  e.  s  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
98ralimdv 2730 . . . . . . . . . . . . 13  |-  ( s 
C_  X  ->  ( A. a  e.  r  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. a  e.  r  A. b  e.  s  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
107, 9syl 16 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  s  e.  ( Idl `  R
) )  ->  ( A. a  e.  r  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. a  e.  r  A. b  e.  s  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
1110adantrl 697 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  (
r  e.  ( Idl `  R )  /\  s  e.  ( Idl `  R
) ) )  -> 
( A. a  e.  r  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P ) )  ->  A. a  e.  r  A. b  e.  s 
( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) ) )
126, 11syld 42 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  (
r  e.  ( Idl `  R )  /\  s  e.  ( Idl `  R
) ) )  -> 
( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P ) )  ->  A. a  e.  r  A. b  e.  s 
( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) ) )
1312adantlr 696 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  P  e.  ( Idl `  R ) )  /\  ( r  e.  ( Idl `  R )  /\  s  e.  ( Idl `  R ) ) )  ->  ( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. a  e.  r  A. b  e.  s  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )
14 r19.26-2 2784 . . . . . . . . . . 11  |-  ( A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  /\  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) )  <->  ( A. a  e.  r  A. b  e.  s  (
a H b )  e.  P  /\  A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) ) ) )
15 pm3.35 571 . . . . . . . . . . . . . 14  |-  ( ( ( a H b )  e.  P  /\  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) )  -> 
( a  e.  P  \/  b  e.  P
) )
1615ralimi 2726 . . . . . . . . . . . . 13  |-  ( A. b  e.  s  (
( a H b )  e.  P  /\  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) )  ->  A. b  e.  s 
( a  e.  P  \/  b  e.  P
) )
1716ralimi 2726 . . . . . . . . . . . 12  |-  ( A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  /\  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) )  ->  A. a  e.  r  A. b  e.  s 
( a  e.  P  \/  b  e.  P
) )
18 2ralor 2822 . . . . . . . . . . . . . 14  |-  ( A. a  e.  r  A. b  e.  s  (
a  e.  P  \/  b  e.  P )  <->  ( A. a  e.  r  a  e.  P  \/  A. b  e.  s  b  e.  P ) )
1918biimpi 187 . . . . . . . . . . . . 13  |-  ( A. a  e.  r  A. b  e.  s  (
a  e.  P  \/  b  e.  P )  ->  ( A. a  e.  r  a  e.  P  \/  A. b  e.  s  b  e.  P ) )
20 dfss3 3283 . . . . . . . . . . . . . 14  |-  ( r 
C_  P  <->  A. a  e.  r  a  e.  P )
21 dfss3 3283 . . . . . . . . . . . . . 14  |-  ( s 
C_  P  <->  A. b  e.  s  b  e.  P )
2220, 21orbi12i 508 . . . . . . . . . . . . 13  |-  ( ( r  C_  P  \/  s  C_  P )  <->  ( A. a  e.  r  a  e.  P  \/  A. b  e.  s  b  e.  P ) )
2319, 22sylibr 204 . . . . . . . . . . . 12  |-  ( A. a  e.  r  A. b  e.  s  (
a  e.  P  \/  b  e.  P )  ->  ( r  C_  P  \/  s  C_  P ) )
2417, 23syl 16 . . . . . . . . . . 11  |-  ( A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  /\  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) ) )  -> 
( r  C_  P  \/  s  C_  P ) )
2514, 24sylbir 205 . . . . . . . . . 10  |-  ( ( A. a  e.  r 
A. b  e.  s  ( a H b )  e.  P  /\  A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) ) )  -> 
( r  C_  P  \/  s  C_  P ) )
2625expcom 425 . . . . . . . . 9  |-  ( A. a  e.  r  A. b  e.  s  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) )  ->  ( A. a  e.  r  A. b  e.  s 
( a H b )  e.  P  -> 
( r  C_  P  \/  s  C_  P ) ) )
2713, 26syl6 31 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  P  e.  ( Idl `  R ) )  /\  ( r  e.  ( Idl `  R )  /\  s  e.  ( Idl `  R ) ) )  ->  ( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  ( A. a  e.  r  A. b  e.  s 
( a H b )  e.  P  -> 
( r  C_  P  \/  s  C_  P ) ) ) )
2827ralrimdvva 2746 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  P  e.  ( Idl `  R
) )  ->  ( A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P
) )  ->  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) )
2928ex 424 . . . . . 6  |-  ( R  e.  RingOps  ->  ( P  e.  ( Idl `  R
)  ->  ( A. a  e.  X  A. b  e.  X  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) )  ->  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) ) )
3029adantrd 455 . . . . 5  |-  ( R  e.  RingOps  ->  ( ( P  e.  ( Idl `  R
)  /\  P  =/=  X )  ->  ( A. a  e.  X  A. b  e.  X  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) )  ->  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) ) )
3130imdistand 674 . . . 4  |-  ( R  e.  RingOps  ->  ( ( ( P  e.  ( Idl `  R )  /\  P  =/=  X )  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) ) )  -> 
( ( P  e.  ( Idl `  R
)  /\  P  =/=  X )  /\  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) ) )
32 df-3an 938 . . . 4  |-  ( ( P  e.  ( Idl `  R )  /\  P  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) )  <->  ( ( P  e.  ( Idl `  R )  /\  P  =/=  X )  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  e.  P  -> 
( a  e.  P  \/  b  e.  P
) ) ) )
33 df-3an 938 . . . 4  |-  ( ( P  e.  ( Idl `  R )  /\  P  =/=  X  /\  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) )  <-> 
( ( P  e.  ( Idl `  R
)  /\  P  =/=  X )  /\  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) )
3431, 32, 333imtr4g 262 . . 3  |-  ( R  e.  RingOps  ->  ( ( P  e.  ( Idl `  R
)  /\  P  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P ) ) )  ->  ( P  e.  ( Idl `  R
)  /\  P  =/=  X  /\  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) ) )
35 ispridl2.2 . . . 4  |-  H  =  ( 2nd `  R
)
361, 35, 2ispridl 26337 . . 3  |-  ( R  e.  RingOps  ->  ( P  e.  ( PrIdl `  R )  <->  ( P  e.  ( Idl `  R )  /\  P  =/=  X  /\  A. r  e.  ( Idl `  R
) A. s  e.  ( Idl `  R
) ( A. a  e.  r  A. b  e.  s  ( a H b )  e.  P  ->  ( r  C_  P  \/  s  C_  P ) ) ) ) )
3734, 36sylibrd 226 . 2  |-  ( R  e.  RingOps  ->  ( ( P  e.  ( Idl `  R
)  /\  P  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  P  ->  ( a  e.  P  \/  b  e.  P ) ) )  ->  P  e.  (
PrIdl `  R ) ) )
3837imp 419 1  |-  ( ( R  e.  RingOps  /\  ( P  e.  ( Idl `  R )  /\  P  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  P  ->  (
a  e.  P  \/  b  e.  P )
) ) )  ->  P  e.  ( PrIdl `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651    C_ wss 3265   ran crn 4821   ` cfv 5396  (class class class)co 6022   1stc1st 6288   2ndc2nd 6289   RingOpscrngo 21813   Idlcidl 26310   PrIdlcpridl 26311
This theorem is referenced by:  ispridlc  26373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-idl 26313  df-pridl 26314
  Copyright terms: Public domain W3C validator