MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Unicode version

Theorem isprm2lem 13086
Description: Lemma for isprm2 13087. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 neeq1 2609 . . . 4  |-  ( p  =  P  ->  (
p  =/=  1  <->  P  =/=  1 ) )
2 breq2 4216 . . . . . . 7  |-  ( p  =  P  ->  (
n  ||  p  <->  n  ||  P
) )
32rabbidv 2948 . . . . . 6  |-  ( p  =  P  ->  { n  e.  NN  |  n  ||  p }  =  {
n  e.  NN  |  n  ||  P } )
43breq1d 4222 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
5 preq2 3884 . . . . . 6  |-  ( p  =  P  ->  { 1 ,  p }  =  { 1 ,  P } )
63, 5eqeq12d 2450 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
74, 6bibi12d 313 . . . 4  |-  ( p  =  P  ->  (
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
)  <->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) ) )
81, 7imbi12d 312 . . 3  |-  ( p  =  P  ->  (
( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )  <->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) ) )
9 1idssfct 13085 . . . . . . . 8  |-  ( p  e.  NN  ->  { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p } )
10 disjsn 3868 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  -.  p  e.  {
1 } )
11 1ex 9086 . . . . . . . . . . . . . 14  |-  1  e.  _V
1211ensn1 7171 . . . . . . . . . . . . 13  |-  { 1 }  ~~  1o
13 vex 2959 . . . . . . . . . . . . . 14  |-  p  e. 
_V
1413ensn1 7171 . . . . . . . . . . . . 13  |-  { p }  ~~  1o
15 pm54.43 7887 . . . . . . . . . . . . 13  |-  ( ( { 1 }  ~~  1o  /\  { p }  ~~  1o )  ->  (
( { 1 }  i^i  { p }
)  =  (/)  <->  ( {
1 }  u.  {
p } )  ~~  2o ) )
1612, 14, 15mp2an 654 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  ( { 1 }  u.  { p }
)  ~~  2o )
1710, 16bitr3i 243 . . . . . . . . . . 11  |-  ( -.  p  e.  { 1 }  <->  ( { 1 }  u.  { p } )  ~~  2o )
18 elsn 3829 . . . . . . . . . . 11  |-  ( p  e.  { 1 }  <-> 
p  =  1 )
1917, 18xchnxbi 300 . . . . . . . . . 10  |-  ( -.  p  =  1  <->  ( { 1 }  u.  { p } )  ~~  2o )
20 df-ne 2601 . . . . . . . . . 10  |-  ( p  =/=  1  <->  -.  p  =  1 )
21 df-pr 3821 . . . . . . . . . . 11  |-  { 1 ,  p }  =  ( { 1 }  u.  { p } )
2221breq1i 4219 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  2o  <->  ( { 1 }  u.  { p } )  ~~  2o )
2319, 20, 223bitr4i 269 . . . . . . . . 9  |-  ( p  =/=  1  <->  { 1 ,  p }  ~~  2o )
24 ensym 7156 . . . . . . . . . 10  |-  ( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  2o  ~~  {
n  e.  NN  |  n  ||  p } )
25 entr 7159 . . . . . . . . . 10  |-  ( ( { 1 ,  p }  ~~  2o  /\  2o  ~~ 
{ n  e.  NN  |  n  ||  p }
)  ->  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )
2624, 25sylan2 461 . . . . . . . . 9  |-  ( ( { 1 ,  p }  ~~  2o  /\  {
n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
2723, 26sylanb 459 . . . . . . . 8  |-  ( ( p  =/=  1  /\ 
{ n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
28 prfi 7381 . . . . . . . . . . 11  |-  { 1 ,  p }  e.  Fin
29 ensym 7156 . . . . . . . . . . 11  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p } )
30 enfii 7326 . . . . . . . . . . 11  |-  ( ( { 1 ,  p }  e.  Fin  /\  {
n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p }
)  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3128, 29, 30sylancr 645 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3231adantl 453 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
33 dfpss2 3432 . . . . . . . . . . . 12  |-  ( { 1 ,  p }  C.  { n  e.  NN  |  n  ||  p }  <->  ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
) )
34 pssinf 7319 . . . . . . . . . . . 12  |-  ( ( { 1 ,  p }  C.  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3533, 34sylanbr 460 . . . . . . . . . . 11  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  /\  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3635an32s 780 . . . . . . . . . 10  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  /\  -.  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3736ex 424 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  ( -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin ) )
3832, 37mt4d 132 . . . . . . . 8  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { 1 ,  p }  =  {
n  e.  NN  |  n  ||  p } )
399, 27, 38syl2an 464 . . . . . . 7  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p } )
4039eqcomd 2441 . . . . . 6  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } )
4140expr 599 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } ) )
42 breq1 4215 . . . . . . . 8  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { 1 ,  p }  ~~  2o ) )
4342, 23syl6bbr 255 . . . . . . 7  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  p  =/=  1 ) )
4443biimprcd 217 . . . . . 6  |-  ( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4544adantl 453 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4641, 45impbid 184 . . . 4  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )
4746ex 424 . . 3  |-  ( p  e.  NN  ->  (
p  =/=  1  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) ) )
488, 47vtoclga 3017 . 2  |-  ( P  e.  NN  ->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) )
4948imp 419 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   {crab 2709    u. cun 3318    i^i cin 3319    C_ wss 3320    C. wpss 3321   (/)c0 3628   {csn 3814   {cpr 3815   class class class wbr 4212   1oc1o 6717   2oc2o 6718    ~~ cen 7106   Fincfn 7109   1c1 8991   NNcn 10000    || cdivides 12852
This theorem is referenced by:  isprm2  13087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-z 10283  df-dvds 12853
  Copyright terms: Public domain W3C validator