MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm3 Structured version   Unicode version

Theorem isprm3 13080
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Distinct variable group:    z, P

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 13079 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 iman 414 . . . . . . 7  |-  ( ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  ( z  e.  NN  /\  -.  (
z  =  1  \/  z  =  P ) ) )
3 2nn 10125 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
4 elnnuz 10514 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  NN  <->  2  e.  ( ZZ>= `  1 )
)
53, 4mpbi 200 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ( ZZ>= `  1 )
6 uztrn 10494 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  ( ZZ>= `  1 )
)  ->  P  e.  ( ZZ>= `  1 )
)
75, 6mpan2 653 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ( ZZ>= `  1 )
)
8 elnnuz 10514 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  NN  <->  P  e.  ( ZZ>= `  1 )
)
97, 8sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
10 nnz 10295 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  z  e.  ZZ )
11 dvdsle 12887 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
1210, 11sylan 458 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
13 nnge1 10018 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  1  <_  z )
1413adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  1  <_  z )
1512, 14jctild 528 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
169, 15sylan2 461 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
17 zre 10278 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  z  e.  RR )
18 nnre 9999 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  RR )
19 1re 9082 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
20 leltne 9156 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  z  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
2119, 20mp3an1 1266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  RR  /\  1  <_  z )  -> 
( 1  <  z  <->  z  =/=  1 ) )
22213adant2 976 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
23223expia 1155 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( 1  <_  z  ->  ( 1  <  z  <->  z  =/=  1 ) ) )
24 leltne 9156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P  =/=  z ) )
25243expia 1155 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( z  <_  P  ->  ( z  <  P  <->  P  =/=  z ) ) )
2623, 25anim12d 547 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
2717, 18, 26syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
28 pm4.38 843 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  ( z  =/=  1  /\  P  =/=  z ) ) )
29 df-ne 2600 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =/=  1  <->  -.  z  =  1 )
30 necom 2679 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  =/=  z  <->  z  =/=  P )
31 df-ne 2600 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =/=  P  <->  -.  z  =  P )
3230, 31bitri 241 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  =/=  z  <->  -.  z  =  P )
3329, 32anbi12i 679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  1  /\  P  =/=  z )  <-> 
( -.  z  =  1  /\  -.  z  =  P ) )
34 ioran 477 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  /\  -.  z  =  P )
)
3533, 34bitr4i 244 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =/=  1  /\  P  =/=  z )  <->  -.  ( z  =  1  \/  z  =  P ) )
3628, 35syl6bb 253 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) )
3727, 36syl6 31 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
3810, 9, 37syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
3916, 38syld 42 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) ) )
4039imp 419 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) )
41 eluzelz 10488 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
42 1z 10303 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ZZ
43 zltp1le 10317 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  z  e.  ZZ )  ->  ( 1  <  z  <->  ( 1  +  1 )  <_  z ) )
4442, 43mpan 652 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  ( 1  +  1 )  <_ 
z ) )
45 df-2 10050 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
4645breq1i 4211 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  <_  z  <->  ( 1  +  1 )  <_ 
z )
4744, 46syl6bbr 255 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  2  <_  z ) )
4847adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  z  <->  2  <_  z ) )
49 zltlem1 10320 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
5048, 49anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
51 peano2zm 10312 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
52 2z 10304 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
53 elfz 11041 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  2  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  -> 
( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
5452, 53mp3an2 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
5551, 54sylan2 461 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
5650, 55bitr4d 248 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5710, 41, 56syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5857adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5940, 58bitr3d 247 . . . . . . . . . . . 12  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
6059anasss 629 . . . . . . . . . . 11  |-  ( ( z  e.  NN  /\  ( P  e.  ( ZZ>=
`  2 )  /\  z  ||  P ) )  ->  ( -.  (
z  =  1  \/  z  =  P )  <-> 
z  e.  ( 2 ... ( P  - 
1 ) ) ) )
6160expcom 425 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
z  e.  NN  ->  ( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
6261pm5.32d 621 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
63 fzssuz 11085 . . . . . . . . . . . . 13  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  2 )
64 2re 10061 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
65 1lt2 10134 . . . . . . . . . . . . . . . 16  |-  1  <  2
6619, 64, 65ltleii 9188 . . . . . . . . . . . . . . 15  |-  1  <_  2
67 eluz 10491 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  e.  (
ZZ>= `  1 )  <->  1  <_  2 ) )
6842, 52, 67mp2an 654 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( ZZ>= `  1
)  <->  1  <_  2
)
6966, 68mpbir 201 . . . . . . . . . . . . . 14  |-  2  e.  ( ZZ>= `  1 )
70 uzss 10498 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 ) )
7169, 70ax-mp 8 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
7263, 71sstri 3349 . . . . . . . . . . . 12  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  1 )
73 nnuz 10513 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
7472, 73sseqtr4i 3373 . . . . . . . . . . 11  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
7574sseli 3336 . . . . . . . . . 10  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  z  e.  NN )
7675pm4.71ri 615 . . . . . . . . 9  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7762, 76syl6bbr 255 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7877notbid 286 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  ( -.  ( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
792, 78syl5bb 249 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8079pm5.74da 669 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  ||  P  ->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
81 bi2.04 351 . . . . 5  |-  ( ( z  ||  P  -> 
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
82 con2b 325 . . . . 5  |-  ( ( z  ||  P  ->  -.  z  e.  (
2 ... ( P  - 
1 ) ) )  <-> 
( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) )
8380, 81, 823bitr3g 279 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) ) )
8483ralbidv2 2719 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
8584pm5.32i 619 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
861, 85bitri 241 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    C_ wss 3312   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   RRcr 8981   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   2c2 10041   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035    || cdivides 12844   Primecprime 13071
This theorem is referenced by:  prmind2  13082  2prm  13087  3prm  13088  wilth  20846  mersenne  21003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-dvds 12845  df-prm 13072
  Copyright terms: Public domain W3C validator