MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm3 Unicode version

Theorem isprm3 12767
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Distinct variable group:    z, P

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 12766 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 iman 413 . . . . . . 7  |-  ( ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  ( z  e.  NN  /\  -.  (
z  =  1  \/  z  =  P ) ) )
3 2nn 9877 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
4 elnnuz 10264 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  e.  NN  <->  2  e.  ( ZZ>= `  1 )
)
53, 4mpbi 199 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ( ZZ>= `  1 )
6 uztrn 10244 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  ( ZZ>= `  1 )
)  ->  P  e.  ( ZZ>= `  1 )
)
75, 6mpan2 652 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ( ZZ>= `  1 )
)
8 elnnuz 10264 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  NN  <->  P  e.  ( ZZ>= `  1 )
)
97, 8sylibr 203 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
10 nnz 10045 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  z  e.  ZZ )
11 dvdsle 12574 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
1210, 11sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
13 nnge1 9772 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  1  <_  z )
1413adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  1  <_  z )
1512, 14jctild 527 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
169, 15sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
17 zre 10028 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  z  e.  RR )
18 nnre 9753 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  RR )
19 1re 8837 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
20 leltne 8911 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  z  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
2119, 20mp3an1 1264 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  RR  /\  1  <_  z )  -> 
( 1  <  z  <->  z  =/=  1 ) )
22213adant2 974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
23223expia 1153 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( 1  <_  z  ->  ( 1  <  z  <->  z  =/=  1 ) ) )
24 leltne 8911 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P  =/=  z ) )
25243expia 1153 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( z  <_  P  ->  ( z  <  P  <->  P  =/=  z ) ) )
2623, 25anim12d 546 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  RR  /\  P  e.  RR )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
2717, 18, 26syl2an 463 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
28 pm4.38 842 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  ( z  =/=  1  /\  P  =/=  z ) ) )
29 df-ne 2448 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =/=  1  <->  -.  z  =  1 )
30 necom 2527 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  =/=  z  <->  z  =/=  P )
31 df-ne 2448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =/=  P  <->  -.  z  =  P )
3230, 31bitri 240 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  =/=  z  <->  -.  z  =  P )
3329, 32anbi12i 678 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  1  /\  P  =/=  z )  <-> 
( -.  z  =  1  /\  -.  z  =  P ) )
34 ioran 476 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  /\  -.  z  =  P )
)
3533, 34bitr4i 243 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =/=  1  /\  P  =/=  z )  <->  -.  ( z  =  1  \/  z  =  P ) )
3628, 35syl6bb 252 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) )
3727, 36syl6 29 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
3810, 9, 37syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
3916, 38syld 40 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) ) )
4039imp 418 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) )
41 eluzelz 10238 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
42 1z 10053 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ZZ
43 zltp1le 10067 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  z  e.  ZZ )  ->  ( 1  <  z  <->  ( 1  +  1 )  <_  z ) )
4442, 43mpan 651 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  ( 1  +  1 )  <_ 
z ) )
45 df-2 9804 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
4645breq1i 4030 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  <_  z  <->  ( 1  +  1 )  <_ 
z )
4744, 46syl6bbr 254 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  2  <_  z ) )
4847adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  z  <->  2  <_  z ) )
49 zltlem1 10070 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
5048, 49anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
51 peano2zm 10062 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
52 2z 10054 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
53 elfz 10788 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  2  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  -> 
( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
5452, 53mp3an2 1265 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
5551, 54sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
5650, 55bitr4d 247 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5710, 41, 56syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5857adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
5940, 58bitr3d 246 . . . . . . . . . . . 12  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
6059anasss 628 . . . . . . . . . . 11  |-  ( ( z  e.  NN  /\  ( P  e.  ( ZZ>=
`  2 )  /\  z  ||  P ) )  ->  ( -.  (
z  =  1  \/  z  =  P )  <-> 
z  e.  ( 2 ... ( P  - 
1 ) ) ) )
6160expcom 424 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
z  e.  NN  ->  ( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
6261pm5.32d 620 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
63 fzssuz 10832 . . . . . . . . . . . . 13  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  2 )
64 2re 9815 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
65 1lt2 9886 . . . . . . . . . . . . . . . 16  |-  1  <  2
6619, 64, 65ltleii 8941 . . . . . . . . . . . . . . 15  |-  1  <_  2
67 eluz 10241 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  ZZ  /\  2  e.  ZZ )  ->  ( 2  e.  (
ZZ>= `  1 )  <->  1  <_  2 ) )
6842, 52, 67mp2an 653 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ( ZZ>= `  1
)  <->  1  <_  2
)
6966, 68mpbir 200 . . . . . . . . . . . . . 14  |-  2  e.  ( ZZ>= `  1 )
70 uzss 10248 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 ) )
7169, 70ax-mp 8 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
7263, 71sstri 3188 . . . . . . . . . . . 12  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  1 )
73 nnuz 10263 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
7472, 73sseqtr4i 3211 . . . . . . . . . . 11  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
7574sseli 3176 . . . . . . . . . 10  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  z  e.  NN )
7675pm4.71ri 614 . . . . . . . . 9  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7762, 76syl6bbr 254 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7877notbid 285 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  ( -.  ( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
792, 78syl5bb 248 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8079pm5.74da 668 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  ||  P  ->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
81 bi2.04 350 . . . . 5  |-  ( ( z  ||  P  -> 
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
82 con2b 324 . . . . 5  |-  ( ( z  ||  P  ->  -.  z  e.  (
2 ... ( P  - 
1 ) ) )  <-> 
( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) )
8380, 81, 823bitr3g 278 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) ) )
8483ralbidv2 2565 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
8584pm5.32i 618 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
861, 85bitri 240 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    || cdivides 12531   Primecprime 12758
This theorem is referenced by:  prmind2  12769  2prm  12774  3prm  12775  wilth  20309  mersenne  20466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-dvds 12532  df-prm 12759
  Copyright terms: Public domain W3C validator