MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Unicode version

Theorem isprm5 13112
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm4 13089 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
2 prmuz2 13097 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
32a1i 11 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
) )
4 eluz2b2 10548 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
54simprbi 451 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6 eluzelre 10497 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
74simplbi 447 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
87nngt0d 10043 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <  P )
9 ltmulgt11 9870 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR  /\  P  e.  RR  /\  0  <  P )  ->  (
1  <  P  <->  P  <  ( P  x.  P ) ) )
106, 6, 8, 9syl3anc 1184 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  <  P  <->  P  <  ( P  x.  P ) ) )
115, 10mpbid 202 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  <  ( P  x.  P ) )
126, 6remulcld 9116 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  x.  P )  e.  RR )
136, 12ltnled 9220 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  <  ( P  x.  P
)  <->  -.  ( P  x.  P )  <_  P
) )
1411, 13mpbid 202 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  -.  ( P  x.  P )  <_  P )
15 oveq12 6090 . . . . . . . . . . . . 13  |-  ( ( z  =  P  /\  z  =  P )  ->  ( z  x.  z
)  =  ( P  x.  P ) )
1615anidms 627 . . . . . . . . . . . 12  |-  ( z  =  P  ->  (
z  x.  z )  =  ( P  x.  P ) )
1716breq1d 4222 . . . . . . . . . . 11  |-  ( z  =  P  ->  (
( z  x.  z
)  <_  P  <->  ( P  x.  P )  <_  P
) )
1817notbid 286 . . . . . . . . . 10  |-  ( z  =  P  ->  ( -.  ( z  x.  z
)  <_  P  <->  -.  ( P  x.  P )  <_  P ) )
1914, 18syl5ibrcom 214 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  =  P  ->  -.  (
z  x.  z )  <_  P ) )
2019imim2d 50 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( z  ||  P  ->  -.  ( z  x.  z )  <_  P
) ) )
21 con2 110 . . . . . . . 8  |-  ( ( z  ||  P  ->  -.  ( z  x.  z
)  <_  P )  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
2220, 21syl6 31 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
233, 22imim12d 70 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  ->  ( z  e. 
Prime  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) ) )
2423ralimdv2 2786 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
25 annim 415 . . . . . . . . 9  |-  ( ( z  ||  P  /\  -.  z  =  P
)  <->  -.  ( z  ||  P  ->  z  =  P ) )
26 oveq12 6090 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  z  /\  x  =  z )  ->  ( x  x.  x
)  =  ( z  x.  z ) )
2726anidms 627 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x  x.  x )  =  ( z  x.  z ) )
2827breq1d 4222 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  x.  x
)  <_  P  <->  ( z  x.  z )  <_  P
) )
29 breq1 4215 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
3028, 29anbi12d 692 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( z  x.  z )  <_  P  /\  z  ||  P ) ) )
3130rspcev 3052 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
( z  x.  z
)  <_  P  /\  z  ||  P ) )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
3231ancom2s 778 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
z  ||  P  /\  ( z  x.  z
)  <_  P )
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
3332expr 599 . . . . . . . . . . . 12  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
3433ad2ant2lr 729 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
35 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  ||  P )
36 eluzelz 10496 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  ZZ )
38 eluz2b2 10548 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
3938simplbi 447 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
4039ad2antlr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  NN )
4140nnne0d 10044 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  0 )
42 eluzelz 10496 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
4342ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  ZZ )
44 dvdsval2 12855 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  z  =/=  0  /\  P  e.  ZZ )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4537, 41, 43, 44syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4635, 45mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ZZ )
47 eluzelre 10497 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
4847ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  RR )
4948recnd 9114 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  CC )
5049mulid2d 9106 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  =  z )
517ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  NN )
52 dvdsle 12895 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
5352imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ZZ  /\  P  e.  NN )  /\  z  ||  P
)  ->  z  <_  P )
5437, 51, 35, 53syl21anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <_  P )
55 simprr 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  -.  z  =  P )
5655neneqad 2674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  P )
5756necomd 2687 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =/=  z )
586ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
5948, 58ltlend 9218 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  <  P  <->  ( z  <_  P  /\  P  =/=  z ) ) )
6054, 57, 59mpbir2and 889 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <  P )
6150, 60eqbrtrd 4232 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  <  P )
62 1re 9090 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
6362a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  e.  RR )
6443zred 10375 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
65 nnre 10007 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  z  e.  RR )
66 nngt0 10029 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  0  <  z )
6765, 66jca 519 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
6840, 67syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  e.  RR  /\  0  <  z ) )
69 ltmuldiv 9880 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  (
z  e.  RR  /\  0  <  z ) )  ->  ( ( 1  x.  z )  < 
P  <->  1  <  ( P  /  z ) ) )
7063, 64, 68, 69syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( 1  x.  z
)  <  P  <->  1  <  ( P  /  z ) ) )
7161, 70mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  <  ( P  /  z
) )
72 eluz2b1 10547 . . . . . . . . . . . . 13  |-  ( ( P  /  z )  e.  ( ZZ>= `  2
)  <->  ( ( P  /  z )  e.  ZZ  /\  1  < 
( P  /  z
) ) )
7346, 71, 72sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ( ZZ>= `  2 )
)
7448, 48remulcld 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  RR )
7540, 40nnmulcld 10047 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  NN )
76 nnrp 10621 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  RR+ )
77 nnrp 10621 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  x.  z )  e.  NN  ->  (
z  x.  z )  e.  RR+ )
78 rpdivcl 10634 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  RR+  /\  (
z  x.  z )  e.  RR+ )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
7976, 77, 78syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  NN  /\  ( z  x.  z
)  e.  NN )  ->  ( P  / 
( z  x.  z
) )  e.  RR+ )
8051, 75, 79syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
8158, 74, 80lemul1d 10687 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
8258recnd 9114 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  CC )
8382, 49, 82, 49, 41, 41divmuldivd 9831 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( ( P  x.  P )  / 
( z  x.  z
) ) )
8475nncnd 10016 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  CC )
8575nnne0d 10044 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  =/=  0 )
8682, 82, 84, 85divassd 9825 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  x.  P
)  /  ( z  x.  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8783, 86eqtrd 2468 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8882, 84, 85divcan2d 9792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) )  =  P )
8988eqcomd 2441 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =  ( ( z  x.  z )  x.  ( P  /  (
z  x.  z ) ) ) )
9087, 89breq12d 4225 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
9181, 90bitr4d 248 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
9291biimpd 199 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  <_  P ) )
9382, 49, 41divcan2d 9792 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  ( P  /  z ) )  =  P )
94 dvds0lem 12860 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ZZ  /\  ( P  /  z
)  e.  ZZ  /\  P  e.  ZZ )  /\  ( z  x.  ( P  /  z ) )  =  P )  -> 
( P  /  z
)  ||  P )
9537, 46, 43, 93, 94syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  ||  P )
9692, 95jctird 529 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) ) )
97 oveq12 6090 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( P  /  z )  /\  x  =  ( P  /  z ) )  ->  ( x  x.  x )  =  ( ( P  /  z
)  x.  ( P  /  z ) ) )
9897anidms 627 . . . . . . . . . . . . . . 15  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  x )  =  ( ( P  /  z )  x.  ( P  /  z
) ) )
9998breq1d 4222 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
( x  x.  x
)  <_  P  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
100 breq1 4215 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
x  ||  P  <->  ( P  /  z )  ||  P ) )
10199, 100anbi12d 692 . . . . . . . . . . . . 13  |-  ( x  =  ( P  / 
z )  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( ( P  /  z )  x.  ( P  /  z
) )  <_  P  /\  ( P  /  z
)  ||  P )
) )
102101rspcev 3052 . . . . . . . . . . . 12  |-  ( ( ( P  /  z
)  e.  ( ZZ>= ` 
2 )  /\  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
10373, 96, 102ee12an 1372 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10474, 58letrid 9223 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  \/  P  <_  ( z  x.  z ) ) )
10534, 103, 104mpjaod 371 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
106105ex 424 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
z  ||  P  /\  -.  z  =  P
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10725, 106syl5bir 210 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( -.  ( z  ||  P  ->  z  =  P )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
108107rexlimdva 2830 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
109 exprmfct 13110 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  2
)  ->  E. z  e.  Prime  z  ||  x
)
110109ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  z  ||  x
)
111 prmz 13083 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  Prime  ->  z  e.  ZZ )
112111ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  ZZ )
113112zred 10375 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  RR )
114113, 113remulcld 9116 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  e.  RR )
115 eluzelz 10496 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
116115ad3antlr 712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  ZZ )
117116zred 10375 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  RR )
118117, 117remulcld 9116 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  e.  RR )
11942ad3antrrr 711 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  ZZ )
120119zred 10375 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  RR )
121 eluz2b2 10548 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  2
)  <->  ( x  e.  NN  /\  1  < 
x ) )
122121simplbi 447 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
123122ad3antlr 712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  NN )
124 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  x )
125 dvdsle 12895 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  x  e.  NN )  ->  ( z  ||  x  ->  z  <_  x )
)
126125imp 419 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  ZZ  /\  x  e.  NN )  /\  z  ||  x
)  ->  z  <_  x )
127112, 123, 124, 126syl21anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  <_  x )
12839nnnn0d 10274 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN0 )
129128nn0ge0d 10277 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  ->  0  <_  z )
1302, 129syl 16 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  Prime  ->  0  <_ 
z )
131130ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  z )
132 nnnn0 10228 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  NN  ->  x  e.  NN0 )
133132nn0ge0d 10277 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  NN  ->  0  <_  x )
134123, 133syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  x )
135 le2msq 9910 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR  /\  0  <_  z )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( z  <_  x  <->  ( z  x.  z )  <_  (
x  x.  x ) ) )
136113, 131, 117, 134, 135syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  <_  x  <->  ( z  x.  z )  <_  ( x  x.  x ) ) )
137127, 136mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  ( x  x.  x ) )
138 simplrl 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  <_  P )
139114, 118, 120, 137, 138letrd 9227 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  P )
140 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  ||  P )
141 dvdstr 12883 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ  /\  P  e.  ZZ )  ->  (
( z  ||  x  /\  x  ||  P )  ->  z  ||  P
) )
142112, 116, 119, 141syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( ( z  ||  x  /\  x  ||  P
)  ->  z  ||  P ) )
143124, 140, 142mp2and 661 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  P )
144139, 143jc 141 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
145144expr 599 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  z  e.  Prime )  ->  (
z  ||  x  ->  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
146145reximdva 2818 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  ( E. z  e.  Prime  z  ||  x  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
147110, 146mpd 15 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) )
148147ex 424 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( ZZ>= `  2 )
)  ->  ( (
( x  x.  x
)  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
149148rexlimdva 2830 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
150108, 149syld 42 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
151 rexnal 2716 . . . . . 6  |-  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  <->  -.  A. z  e.  ( ZZ>= `  2 )
( z  ||  P  ->  z  =  P ) )
152 rexnal 2716 . . . . . 6  |-  ( E. z  e.  Prime  -.  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P )  <->  -.  A. z  e.  Prime  ( ( z  x.  z
)  <_  P  ->  -.  z  ||  P ) )
153150, 151, 1523imtr3g 261 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( -.  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  -.  A. z  e.  Prime  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P ) ) )
15424, 153impcon4bid 197 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
155 prmnn 13082 . . . . . . . . 9  |-  ( z  e.  Prime  ->  z  e.  NN )
156155nncnd 10016 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  CC )
157156sqvald 11520 . . . . . . 7  |-  ( z  e.  Prime  ->  ( z ^ 2 )  =  ( z  x.  z
) )
158157breq1d 4222 . . . . . 6  |-  ( z  e.  Prime  ->  ( ( z ^ 2 )  <_  P  <->  ( z  x.  z )  <_  P
) )
159158imbi1d 309 . . . . 5  |-  ( z  e.  Prime  ->  ( ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <-> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
160159ralbiia 2737 . . . 4  |-  ( A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) )
161154, 160syl6bbr 255 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
162161pm5.32i 619 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
1631, 162bitri 241 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   NNcn 10000   2c2 10049   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   ^cexp 11382    || cdivides 12852   Primecprime 13079
This theorem is referenced by:  pockthg  13274  prmlem1a  13429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-seq 11324  df-exp 11383  df-dvds 12853  df-prm 13080
  Copyright terms: Public domain W3C validator