MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Unicode version

Theorem isprm5 12791
Description: One need only check prime divisors of  P up to  sqr P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isprm4 12768 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
2 prmuz2 12776 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
)
32a1i 10 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  e.  Prime  ->  z  e.  ( ZZ>= `  2 )
) )
4 eluz2b2 10290 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
54simprbi 450 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6 eluzelre 10239 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
74simplbi 446 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
87nngt0d 9789 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  0  <  P )
9 ltmulgt11 9616 . . . . . . . . . . . . 13  |-  ( ( P  e.  RR  /\  P  e.  RR  /\  0  <  P )  ->  (
1  <  P  <->  P  <  ( P  x.  P ) ) )
106, 6, 8, 9syl3anc 1182 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( 1  <  P  <->  P  <  ( P  x.  P ) ) )
115, 10mpbid 201 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  <  ( P  x.  P ) )
126, 6remulcld 8863 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  x.  P )  e.  RR )
136, 12ltnled 8966 . . . . . . . . . . 11  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  <  ( P  x.  P
)  <->  -.  ( P  x.  P )  <_  P
) )
1411, 13mpbid 201 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  -.  ( P  x.  P )  <_  P )
15 oveq12 5867 . . . . . . . . . . . . 13  |-  ( ( z  =  P  /\  z  =  P )  ->  ( z  x.  z
)  =  ( P  x.  P ) )
1615anidms 626 . . . . . . . . . . . 12  |-  ( z  =  P  ->  (
z  x.  z )  =  ( P  x.  P ) )
1716breq1d 4033 . . . . . . . . . . 11  |-  ( z  =  P  ->  (
( z  x.  z
)  <_  P  <->  ( P  x.  P )  <_  P
) )
1817notbid 285 . . . . . . . . . 10  |-  ( z  =  P  ->  ( -.  ( z  x.  z
)  <_  P  <->  -.  ( P  x.  P )  <_  P ) )
1914, 18syl5ibrcom 213 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( z  =  P  ->  -.  (
z  x.  z )  <_  P ) )
2019imim2d 48 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( z  ||  P  ->  -.  ( z  x.  z )  <_  P
) ) )
21 con2 108 . . . . . . . 8  |-  ( ( z  ||  P  ->  -.  ( z  x.  z
)  <_  P )  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
2220, 21syl6 29 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  z  =  P )  -> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
233, 22imim12d 68 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  ->  ( z  e. 
Prime  ->  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) ) )
2423ralimdv2 2623 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
25 annim 414 . . . . . . . . 9  |-  ( ( z  ||  P  /\  -.  z  =  P
)  <->  -.  ( z  ||  P  ->  z  =  P ) )
26 oveq12 5867 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  z  /\  x  =  z )  ->  ( x  x.  x
)  =  ( z  x.  z ) )
2726anidms 626 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x  x.  x )  =  ( z  x.  z ) )
2827breq1d 4033 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  x.  x
)  <_  P  <->  ( z  x.  z )  <_  P
) )
29 breq1 4026 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  ||  P  <->  z  ||  P ) )
3028, 29anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( z  x.  z )  <_  P  /\  z  ||  P ) ) )
3130rspcev 2884 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
( z  x.  z
)  <_  P  /\  z  ||  P ) )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
3231ancom2s 777 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  (
z  ||  P  /\  ( z  x.  z
)  <_  P )
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
3332expr 598 . . . . . . . . . . . 12  |-  ( ( z  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
3433ad2ant2lr 728 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  ->  E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
35 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  ||  P )
36 eluzelz 10238 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
3736ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  ZZ )
38 eluz2b2 10290 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
3938simplbi 446 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
4039ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  NN )
4140nnne0d 9790 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  0 )
42 eluzelz 10238 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
4342ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  ZZ )
44 dvdsval2 12534 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  z  =/=  0  /\  P  e.  ZZ )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4537, 41, 43, 44syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  ||  P  <->  ( P  /  z )  e.  ZZ ) )
4635, 45mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ZZ )
47 eluzelre 10239 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  RR )
4847ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  RR )
4948recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  e.  CC )
5049mulid2d 8853 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  =  z )
517ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  NN )
52 dvdsle 12574 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
5352imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ZZ  /\  P  e.  NN )  /\  z  ||  P
)  ->  z  <_  P )
5437, 51, 35, 53syl21anc 1181 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <_  P )
55 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  -.  z  =  P )
56 df-ne 2448 . . . . . . . . . . . . . . . . . 18  |-  ( z  =/=  P  <->  -.  z  =  P )
5755, 56sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  =/=  P )
5857necomd 2529 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =/=  z )
596ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
6048, 59ltlend 8964 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  <  P  <->  ( z  <_  P  /\  P  =/=  z ) ) )
6154, 58, 60mpbir2and 888 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  z  <  P )
6250, 61eqbrtrd 4043 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
1  x.  z )  <  P )
63 1re 8837 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
6463a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  e.  RR )
6543zred 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  RR )
66 nnre 9753 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  z  e.  RR )
67 nngt0 9775 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  ->  0  <  z )
6866, 67jca 518 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
6940, 68syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  e.  RR  /\  0  <  z ) )
70 ltmuldiv 9626 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  (
z  e.  RR  /\  0  <  z ) )  ->  ( ( 1  x.  z )  < 
P  <->  1  <  ( P  /  z ) ) )
7164, 65, 69, 70syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( 1  x.  z
)  <  P  <->  1  <  ( P  /  z ) ) )
7262, 71mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  1  <  ( P  /  z
) )
73 eluz2b1 10289 . . . . . . . . . . . . 13  |-  ( ( P  /  z )  e.  ( ZZ>= `  2
)  <->  ( ( P  /  z )  e.  ZZ  /\  1  < 
( P  /  z
) ) )
7446, 72, 73sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  e.  ( ZZ>= `  2 )
)
7548, 48remulcld 8863 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  RR )
7640, 40nnmulcld 9793 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  NN )
77 nnrp 10363 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  RR+ )
78 nnrp 10363 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  x.  z )  e.  NN  ->  (
z  x.  z )  e.  RR+ )
79 rpdivcl 10376 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  RR+  /\  (
z  x.  z )  e.  RR+ )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
8077, 78, 79syl2an 463 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  NN  /\  ( z  x.  z
)  e.  NN )  ->  ( P  / 
( z  x.  z
) )  e.  RR+ )
8151, 76, 80syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  ( z  x.  z ) )  e.  RR+ )
8259, 75, 81lemul1d 10429 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
8359recnd 8861 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  e.  CC )
8483, 49, 83, 49, 41, 41divmuldivd 9577 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( ( P  x.  P )  / 
( z  x.  z
) ) )
8576nncnd 9762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  e.  CC )
8676nnne0d 9790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  z )  =/=  0 )
8783, 83, 85, 86divassd 9571 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  x.  P
)  /  ( z  x.  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8884, 87eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  =  ( P  x.  ( P  /  (
z  x.  z ) ) ) )
8983, 85, 86divcan2d 9538 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) )  =  P )
9089eqcomd 2288 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  P  =  ( ( z  x.  z )  x.  ( P  /  (
z  x.  z ) ) ) )
9188, 90breq12d 4036 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  <->  ( P  x.  ( P  /  (
z  x.  z ) ) )  <_  (
( z  x.  z
)  x.  ( P  /  ( z  x.  z ) ) ) ) )
9282, 91bitr4d 247 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
9392biimpd 198 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( P  /  z
)  x.  ( P  /  z ) )  <_  P ) )
9483, 49, 41divcan2d 9538 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
z  x.  ( P  /  z ) )  =  P )
95 dvds0lem 12539 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ZZ  /\  ( P  /  z
)  e.  ZZ  /\  P  e.  ZZ )  /\  ( z  x.  ( P  /  z ) )  =  P )  -> 
( P  /  z
)  ||  P )
9637, 46, 43, 94, 95syl31anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  /  z )  ||  P )
9793, 96jctird 528 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) ) )
98 oveq12 5867 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( P  /  z )  /\  x  =  ( P  /  z ) )  ->  ( x  x.  x )  =  ( ( P  /  z
)  x.  ( P  /  z ) ) )
9998anidms 626 . . . . . . . . . . . . . . 15  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  x )  =  ( ( P  /  z )  x.  ( P  /  z
) ) )
10099breq1d 4033 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
( x  x.  x
)  <_  P  <->  ( ( P  /  z )  x.  ( P  /  z
) )  <_  P
) )
101 breq1 4026 . . . . . . . . . . . . . 14  |-  ( x  =  ( P  / 
z )  ->  (
x  ||  P  <->  ( P  /  z )  ||  P ) )
102100, 101anbi12d 691 . . . . . . . . . . . . 13  |-  ( x  =  ( P  / 
z )  ->  (
( ( x  x.  x )  <_  P  /\  x  ||  P )  <-> 
( ( ( P  /  z )  x.  ( P  /  z
) )  <_  P  /\  ( P  /  z
)  ||  P )
) )
103102rspcev 2884 . . . . . . . . . . . 12  |-  ( ( ( P  /  z
)  e.  ( ZZ>= ` 
2 )  /\  (
( ( P  / 
z )  x.  ( P  /  z ) )  <_  P  /\  ( P  /  z )  ||  P ) )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) )
10474, 97, 103ee12an 1353 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  ( P  <_  ( z  x.  z )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10575, 59letrid 8969 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  (
( z  x.  z
)  <_  P  \/  P  <_  ( z  x.  z ) ) )
10634, 104, 105mpjaod 370 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  z  e.  ( ZZ>= ` 
2 ) )  /\  ( z  ||  P  /\  -.  z  =  P ) )  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) )
107106ex 423 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
z  ||  P  /\  -.  z  =  P
)  ->  E. x  e.  ( ZZ>= `  2 )
( ( x  x.  x )  <_  P  /\  x  ||  P ) ) )
10825, 107syl5bir 209 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( -.  ( z  ||  P  ->  z  =  P )  ->  E. x  e.  (
ZZ>= `  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
109108rexlimdva 2667 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. x  e.  ( ZZ>=
`  2 ) ( ( x  x.  x
)  <_  P  /\  x  ||  P ) ) )
110 exprmfct 12789 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  2
)  ->  E. z  e.  Prime  z  ||  x
)
111110ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  z  ||  x
)
112 prmz 12762 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  Prime  ->  z  e.  ZZ )
113112ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  ZZ )
114113zred 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  e.  RR )
115114, 114remulcld 8863 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  e.  RR )
116 simpllr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  ( ZZ>= ` 
2 ) )
117 eluzelz 10238 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
118116, 117syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  ZZ )
119118zred 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  RR )
120119, 119remulcld 8863 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  e.  RR )
12142ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  ZZ )
122121zred 10117 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  P  e.  RR )
123 eluz2b2 10290 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  2
)  <->  ( x  e.  NN  /\  1  < 
x ) )
124123simplbi 446 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
125116, 124syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  e.  NN )
126 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  x )
127 dvdsle 12574 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  x  e.  NN )  ->  ( z  ||  x  ->  z  <_  x )
)
128127imp 418 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  ZZ  /\  x  e.  NN )  /\  z  ||  x
)  ->  z  <_  x )
129113, 125, 126, 128syl21anc 1181 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  <_  x )
13039nnnn0d 10018 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN0 )
131130nn0ge0d 10021 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ZZ>= `  2
)  ->  0  <_  z )
1322, 131syl 15 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  Prime  ->  0  <_ 
z )
133132ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  z )
134 nnnn0 9972 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  NN  ->  x  e.  NN0 )
135134nn0ge0d 10021 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  NN  ->  0  <_  x )
136125, 135syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
0  <_  x )
137 le2msq 9656 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR  /\  0  <_  z )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( z  <_  x  <->  ( z  x.  z )  <_  (
x  x.  x ) ) )
138114, 133, 119, 136, 137syl22anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  <_  x  <->  ( z  x.  z )  <_  ( x  x.  x ) ) )
139129, 138mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  ( x  x.  x ) )
140 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( x  x.  x
)  <_  P )
141115, 120, 122, 139, 140letrd 8973 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( z  x.  z
)  <_  P )
142 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  x  ||  P )
143 dvdstr 12562 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ  /\  P  e.  ZZ )  ->  (
( z  ||  x  /\  x  ||  P )  ->  z  ||  P
) )
144113, 118, 121, 143syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
( ( z  ||  x  /\  x  ||  P
)  ->  z  ||  P ) )
145126, 142, 144mp2and 660 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  -> 
z  ||  P )
146141, 145jc 139 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  (
z  e.  Prime  /\  z  ||  x ) )  ->  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) )
147146expr 598 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  x  e.  ( ZZ>=
`  2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P
) )  /\  z  e.  Prime )  ->  (
z  ||  x  ->  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
148147reximdva 2655 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  ( E. z  e.  Prime  z  ||  x  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
149111, 148mpd 14 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  x  e.  ( ZZ>= ` 
2 ) )  /\  ( ( x  x.  x )  <_  P  /\  x  ||  P ) )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) )
150149ex 423 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( ZZ>= `  2 )
)  ->  ( (
( x  x.  x
)  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
151150rexlimdva 2667 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. x  e.  ( ZZ>= ` 
2 ) ( ( x  x.  x )  <_  P  /\  x  ||  P )  ->  E. z  e.  Prime  -.  ( (
z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
152109, 151syld 40 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  ->  E. z  e.  Prime  -.  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
153 rexnal 2554 . . . . . 6  |-  ( E. z  e.  ( ZZ>= ` 
2 )  -.  (
z  ||  P  ->  z  =  P )  <->  -.  A. z  e.  ( ZZ>= `  2 )
( z  ||  P  ->  z  =  P ) )
154 rexnal 2554 . . . . . 6  |-  ( E. z  e.  Prime  -.  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P )  <->  -.  A. z  e.  Prime  ( ( z  x.  z
)  <_  P  ->  -.  z  ||  P ) )
155152, 153, 1543imtr3g 260 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( -.  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  ->  -.  A. z  e.  Prime  (
( z  x.  z
)  <_  P  ->  -.  z  ||  P ) ) )
15624, 155impcon4bid 196 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) ) )
157 prmnn 12761 . . . . . . . . 9  |-  ( z  e.  Prime  ->  z  e.  NN )
158157nncnd 9762 . . . . . . . 8  |-  ( z  e.  Prime  ->  z  e.  CC )
159158sqvald 11242 . . . . . . 7  |-  ( z  e.  Prime  ->  ( z ^ 2 )  =  ( z  x.  z
) )
160159breq1d 4033 . . . . . 6  |-  ( z  e.  Prime  ->  ( ( z ^ 2 )  <_  P  <->  ( z  x.  z )  <_  P
) )
161160imbi1d 308 . . . . 5  |-  ( z  e.  Prime  ->  ( ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <-> 
( ( z  x.  z )  <_  P  ->  -.  z  ||  P
) ) )
162161ralbiia 2575 . . . 4  |-  ( A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P )  <->  A. z  e.  Prime  ( ( z  x.  z )  <_  P  ->  -.  z  ||  P ) )
163156, 162syl6bbr 254 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
164163pm5.32i 618 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
1651, 164bitri 240 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ^cexp 11104    || cdivides 12531   Primecprime 12758
This theorem is referenced by:  pockthg  12953  prmlem1a  13108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-exp 11105  df-dvds 12532  df-prm 12759
  Copyright terms: Public domain W3C validator