MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprs Unicode version

Theorem isprs 14064
Description: Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
isprs.b  |-  B  =  ( Base `  K
)
isprs.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
isprs  |-  ( K  e.  Preset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
Distinct variable groups:    x, K, y, z    x, B, y, z    x,  .<_ , y, z

Proof of Theorem isprs
Dummy variables  f 
b  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . 5  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
2 dfsbcq 2993 . . . . 5  |-  ( (
Base `  f )  =  ( Base `  K
)  ->  ( [. ( Base `  f )  /  b ]. [. ( le `  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) )  <->  [. ( Base `  K )  /  b ]. [. ( le `  f )  /  r ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
31, 2syl 15 . . . 4  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  [. ( Base `  K
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
4 fveq2 5525 . . . . . 6  |-  ( f  =  K  ->  ( le `  f )  =  ( le `  K
) )
5 dfsbcq 2993 . . . . . 6  |-  ( ( le `  f )  =  ( le `  K )  ->  ( [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  [. ( le `  K )  /  r ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
64, 5syl 15 . . . . 5  |-  ( f  =  K  ->  ( [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  [. ( le `  K )  /  r ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
76sbcbidv 3045 . . . 4  |-  ( f  =  K  ->  ( [. ( Base `  K
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  [. ( Base `  K
)  /  b ]. [. ( le `  K
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
83, 7bitrd 244 . . 3  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  [. ( Base `  K
)  /  b ]. [. ( le `  K
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
9 fvex 5539 . . . 4  |-  ( Base `  K )  e.  _V
10 fvex 5539 . . . 4  |-  ( le
`  K )  e. 
_V
11 isprs.b . . . . . . 7  |-  B  =  ( Base `  K
)
12 eqtr3 2302 . . . . . . 7  |-  ( ( b  =  ( Base `  K )  /\  B  =  ( Base `  K
) )  ->  b  =  B )
1311, 12mpan2 652 . . . . . 6  |-  ( b  =  ( Base `  K
)  ->  b  =  B )
14 raleq 2736 . . . . . . . 8  |-  ( b  =  B  ->  ( A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
1514raleqbi1dv 2744 . . . . . . 7  |-  ( b  =  B  ->  ( A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
1615raleqbi1dv 2744 . . . . . 6  |-  ( b  =  B  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
1713, 16syl 15 . . . . 5  |-  ( b  =  ( Base `  K
)  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) ) )
18 isprs.l . . . . . . 7  |-  .<_  =  ( le `  K )
19 eqtr3 2302 . . . . . . 7  |-  ( ( r  =  ( le
`  K )  /\  .<_  =  ( le `  K ) )  -> 
r  =  .<_  )
2018, 19mpan2 652 . . . . . 6  |-  ( r  =  ( le `  K )  ->  r  =  .<_  )
21 breq 4025 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( x r x  <->  x  .<_  x ) )
22 breq 4025 . . . . . . . . . . 11  |-  ( r  =  .<_  ->  ( x r y  <->  x  .<_  y ) )
23 breq 4025 . . . . . . . . . . 11  |-  ( r  =  .<_  ->  ( y r z  <->  y  .<_  z ) )
2422, 23anbi12d 691 . . . . . . . . . 10  |-  ( r  =  .<_  ->  ( ( x r y  /\  y r z )  <-> 
( x  .<_  y  /\  y  .<_  z ) ) )
25 breq 4025 . . . . . . . . . 10  |-  ( r  =  .<_  ->  ( x r z  <->  x  .<_  z ) )
2624, 25imbi12d 311 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( ( ( x r y  /\  y r z )  ->  x r
z )  <->  ( (
x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
2721, 26anbi12d 691 . . . . . . . 8  |-  ( r  =  .<_  ->  ( ( x r x  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <-> 
( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
2827ralbidv 2563 . . . . . . 7  |-  ( r  =  .<_  ->  ( A. z  e.  B  (
x r x  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
29282ralbidv 2585 . . . . . 6  |-  ( r  =  .<_  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x r x  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
3020, 29syl 15 . . . . 5  |-  ( r  =  ( le `  K )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
3117, 30sylan9bb 680 . . . 4  |-  ( ( b  =  ( Base `  K )  /\  r  =  ( le `  K ) )  -> 
( A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
329, 10, 31sbc2ie 3058 . . 3  |-  ( [. ( Base `  K )  /  b ]. [. ( le `  K )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
338, 32syl6bb 252 . 2  |-  ( f  =  K  ->  ( [. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
34 df-preset 14062 . 2  |-  Preset  =  {
f  |  [. ( Base `  f )  / 
b ]. [. ( le
`  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) }
3533, 34elab4g 2918 1  |-  ( K  e.  Preset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   [.wsbc 2991   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215    Preset cpreset 14060
This theorem is referenced by:  prslem  14065  ispos2  14082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-preset 14062
  Copyright terms: Public domain W3C validator