MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isps Unicode version

Theorem isps 14327
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
isps  |-  ( R  e.  A  ->  ( R  e.  PosetRel  <->  ( Rel  R  /\  ( R  o.  R
)  C_  R  /\  ( R  i^i  `' R
)  =  (  _I  |`  U. U. R ) ) ) )

Proof of Theorem isps
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 releq 4787 . . 3  |-  ( r  =  R  ->  ( Rel  r  <->  Rel  R ) )
2 coeq1 4857 . . . . 5  |-  ( r  =  R  ->  (
r  o.  r )  =  ( R  o.  r ) )
3 coeq2 4858 . . . . 5  |-  ( r  =  R  ->  ( R  o.  r )  =  ( R  o.  R ) )
42, 3eqtrd 2328 . . . 4  |-  ( r  =  R  ->  (
r  o.  r )  =  ( R  o.  R ) )
5 id 19 . . . 4  |-  ( r  =  R  ->  r  =  R )
64, 5sseq12d 3220 . . 3  |-  ( r  =  R  ->  (
( r  o.  r
)  C_  r  <->  ( R  o.  R )  C_  R
) )
7 cnveq 4871 . . . . 5  |-  ( r  =  R  ->  `' r  =  `' R
)
85, 7ineq12d 3384 . . . 4  |-  ( r  =  R  ->  (
r  i^i  `' r
)  =  ( R  i^i  `' R ) )
9 unieq 3852 . . . . . 6  |-  ( r  =  R  ->  U. r  =  U. R )
109unieqd 3854 . . . . 5  |-  ( r  =  R  ->  U. U. r  =  U. U. R
)
1110reseq2d 4971 . . . 4  |-  ( r  =  R  ->  (  _I  |`  U. U. r
)  =  (  _I  |`  U. U. R ) )
128, 11eqeq12d 2310 . . 3  |-  ( r  =  R  ->  (
( r  i^i  `' r )  =  (  _I  |`  U. U. r
)  <->  ( R  i^i  `' R )  =  (  _I  |`  U. U. R
) ) )
131, 6, 123anbi123d 1252 . 2  |-  ( r  =  R  ->  (
( Rel  r  /\  ( r  o.  r
)  C_  r  /\  ( r  i^i  `' r )  =  (  _I  |`  U. U. r
) )  <->  ( Rel  R  /\  ( R  o.  R )  C_  R  /\  ( R  i^i  `' R )  =  (  _I  |`  U. U. R
) ) ) )
14 df-ps 14322 . 2  |-  PosetRel  =  {
r  |  ( Rel  r  /\  ( r  o.  r )  C_  r  /\  ( r  i^i  `' r )  =  (  _I  |`  U. U. r ) ) }
1513, 14elab2g 2929 1  |-  ( R  e.  A  ->  ( R  e.  PosetRel  <->  ( Rel  R  /\  ( R  o.  R
)  C_  R  /\  ( R  i^i  `' R
)  =  (  _I  |`  U. U. R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1632    e. wcel 1696    i^i cin 3164    C_ wss 3165   U.cuni 3843    _I cid 4320   `'ccnv 4704    |` cres 4707    o. ccom 4709   Rel wrel 4710   PosetRelcps 14317
This theorem is referenced by:  psrel  14328  psref2  14329  pstr2  14330  cnvps  14337  psss  14339  letsr  14365  empos  25345  inposet  25381  dispos  25390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-res 4717  df-ps 14322
  Copyright terms: Public domain W3C validator