Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Unicode version

Theorem ispsubsp2 29935
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l  |-  .<_  =  ( le `  K )
psubspset.j  |-  .\/  =  ( join `  K )
psubspset.a  |-  A  =  ( Atoms `  K )
psubspset.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
ispsubsp2  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
Distinct variable groups:    A, r    q, p, r, K    X, p, q, r    A, p, q
Allowed substitution hints:    D( r, q, p)    S( r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3  |-  .<_  =  ( le `  K )
2 psubspset.j . . 3  |-  .\/  =  ( join `  K )
3 psubspset.a . . 3  |-  A  =  ( Atoms `  K )
4 psubspset.s . . 3  |-  S  =  ( PSubSp `  K )
51, 2, 3, 4ispsubsp 29934 . 2  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
6 ralcom 2700 . . . . . . 7  |-  ( A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  A. r  e.  X  ( p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
7 r19.23v 2659 . . . . . . . 8  |-  ( A. r  e.  X  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
87ralbii 2567 . . . . . . 7  |-  ( A. p  e.  A  A. r  e.  X  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
96, 8bitri 240 . . . . . 6  |-  ( A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
109ralbii 2567 . . . . 5  |-  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
11 ralcom 2700 . . . . . 6  |-  ( A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
12 r19.23v 2659 . . . . . . 7  |-  ( A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1312ralbii 2567 . . . . . 6  |-  ( A. p  e.  A  A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1411, 13bitri 240 . . . . 5  |-  ( A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1510, 14bitri 240 . . . 4  |-  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1615a1i 10 . . 3  |-  ( K  e.  D  ->  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q 
.\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) ) )
1716anbi2d 684 . 2  |-  ( K  e.  D  ->  (
( X  C_  A  /\  A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q 
.\/  r )  ->  p  e.  X )
)  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X
) ) ) )
185, 17bitrd 244 1  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   PSubSpcpsubsp 29685
This theorem is referenced by:  psubspi  29936  paddclN  30031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-psubsp 29692
  Copyright terms: Public domain W3C validator