MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg Unicode version

Theorem isreg 17060
Description: The predicate "is a regular space." In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  x  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) ) )
Distinct variable group:    x, y, z, J

Proof of Theorem isreg
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . . . 8  |-  ( j  =  J  ->  ( cls `  j )  =  ( cls `  J
) )
21fveq1d 5527 . . . . . . 7  |-  ( j  =  J  ->  (
( cls `  j
) `  z )  =  ( ( cls `  J ) `  z
) )
32sseq1d 3205 . . . . . 6  |-  ( j  =  J  ->  (
( ( cls `  j
) `  z )  C_  x  <->  ( ( cls `  J ) `  z
)  C_  x )
)
43anbi2d 684 . . . . 5  |-  ( j  =  J  ->  (
( y  e.  z  /\  ( ( cls `  j ) `  z
)  C_  x )  <->  ( y  e.  z  /\  ( ( cls `  J
) `  z )  C_  x ) ) )
54rexeqbi1dv 2745 . . . 4  |-  ( j  =  J  ->  ( E. z  e.  j 
( y  e.  z  /\  ( ( cls `  j ) `  z
)  C_  x )  <->  E. z  e.  J  ( y  e.  z  /\  ( ( cls `  J
) `  z )  C_  x ) ) )
65ralbidv 2563 . . 3  |-  ( j  =  J  ->  ( A. y  e.  x  E. z  e.  j 
( y  e.  z  /\  ( ( cls `  j ) `  z
)  C_  x )  <->  A. y  e.  x  E. z  e.  J  (
y  e.  z  /\  ( ( cls `  J
) `  z )  C_  x ) ) )
76raleqbi1dv 2744 . 2  |-  ( j  =  J  ->  ( A. x  e.  j  A. y  e.  x  E. z  e.  j 
( y  e.  z  /\  ( ( cls `  j ) `  z
)  C_  x )  <->  A. x  e.  J  A. y  e.  x  E. z  e.  J  (
y  e.  z  /\  ( ( cls `  J
) `  z )  C_  x ) ) )
8 df-reg 17044 . 2  |-  Reg  =  { j  e.  Top  | 
A. x  e.  j 
A. y  e.  x  E. z  e.  j 
( y  e.  z  /\  ( ( cls `  j ) `  z
)  C_  x ) }
97, 8elrab2 2925 1  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  x  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ` cfv 5255   Topctop 16631   clsccl 16755   Regcreg 17037
This theorem is referenced by:  regtop  17061  regsep  17062  isreg2  17105  kqreglem1  17432  kqreglem2  17433  nrmr0reg  17440  reghmph  17484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-reg 17044
  Copyright terms: Public domain W3C validator