Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isriscg Unicode version

Theorem isriscg 26615
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
isriscg  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R  ~=r  S  <->  ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  S ) ) ) )
Distinct variable groups:    R, f    S, f
Allowed substitution hints:    A( f)    B( f)

Proof of Theorem isriscg
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . 4  |-  ( r  =  R  ->  (
r  e.  RingOps  <->  R  e.  RingOps ) )
21anbi1d 685 . . 3  |-  ( r  =  R  ->  (
( r  e.  RingOps  /\  s  e.  RingOps )  <->  ( R  e.  RingOps  /\  s  e.  RingOps ) ) )
3 oveq1 5865 . . . . 5  |-  ( r  =  R  ->  (
r  RngIso  s )  =  ( R  RngIso  s ) )
43eleq2d 2350 . . . 4  |-  ( r  =  R  ->  (
f  e.  ( r 
RngIso  s )  <->  f  e.  ( R  RngIso  s ) ) )
54exbidv 1612 . . 3  |-  ( r  =  R  ->  ( E. f  f  e.  ( r  RngIso  s )  <->  E. f  f  e.  ( R  RngIso  s ) ) )
62, 5anbi12d 691 . 2  |-  ( r  =  R  ->  (
( ( r  e.  RingOps 
/\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) )  <->  ( ( R  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  s ) ) ) )
7 eleq1 2343 . . . 4  |-  ( s  =  S  ->  (
s  e.  RingOps  <->  S  e.  RingOps ) )
87anbi2d 684 . . 3  |-  ( s  =  S  ->  (
( R  e.  RingOps  /\  s  e.  RingOps )  <->  ( R  e.  RingOps  /\  S  e.  RingOps ) ) )
9 oveq2 5866 . . . . 5  |-  ( s  =  S  ->  ( R  RngIso  s )  =  ( R  RngIso  S ) )
109eleq2d 2350 . . . 4  |-  ( s  =  S  ->  (
f  e.  ( R 
RngIso  s )  <->  f  e.  ( R  RngIso  S ) ) )
1110exbidv 1612 . . 3  |-  ( s  =  S  ->  ( E. f  f  e.  ( R  RngIso  s )  <->  E. f  f  e.  ( R  RngIso  S ) ) )
128, 11anbi12d 691 . 2  |-  ( s  =  S  ->  (
( ( R  e.  RingOps 
/\  s  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  s ) )  <->  ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  S ) ) ) )
13 df-risc 26614 . 2  |-  ~=r  =  { <. r ,  s
>.  |  ( (
r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  (
r  RngIso  s ) ) }
146, 12, 13brabg 4284 1  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R  ~=r  S  <->  ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  E. f  f  e.  ( R  RngIso  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RingOpscrngo 21042    RngIso crngiso 26592    ~=r crisc 26593
This theorem is referenced by:  isrisc  26616  risc  26617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-iota 5219  df-fv 5263  df-ov 5861  df-risc 26614
  Copyright terms: Public domain W3C validator