MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrngod Unicode version

Theorem isrngod 21046
Description: Conditions that determine a ring. (Changed label from isrngd 15375 to isrngod 21046-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1  |-  ( ph  ->  G  e.  AbelOp )
isringod.2  |-  ( ph  ->  X  =  ran  G
)
isringod.3  |-  ( ph  ->  H : ( X  X.  X ) --> X )
isringod.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x H y ) H z )  =  ( x H ( y H z ) ) )
isringod.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
isringod.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )
isringod.7  |-  ( ph  ->  U  e.  X )
isringod.8  |-  ( (
ph  /\  y  e.  X )  ->  ( U H y )  =  y )
isringod.9  |-  ( (
ph  /\  y  e.  X )  ->  (
y H U )  =  y )
Assertion
Ref Expression
isrngod  |-  ( ph  -> 
<. G ,  H >.  e.  RingOps )
Distinct variable groups:    ph, x, y, z    x, G, y, z    x, H, y, z    x, X, y, z    x, U, y
Allowed substitution hint:    U( z)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3  |-  ( ph  ->  G  e.  AbelOp )
2 isringod.3 . . . 4  |-  ( ph  ->  H : ( X  X.  X ) --> X )
3 isringod.2 . . . . . 6  |-  ( ph  ->  X  =  ran  G
)
43, 3xpeq12d 4714 . . . . 5  |-  ( ph  ->  ( X  X.  X
)  =  ( ran 
G  X.  ran  G
) )
54, 3feq23d 5386 . . . 4  |-  ( ph  ->  ( H : ( X  X.  X ) --> X  <->  H : ( ran 
G  X.  ran  G
) --> ran  G )
)
62, 5mpbid 201 . . 3  |-  ( ph  ->  H : ( ran 
G  X.  ran  G
) --> ran  G )
7 isringod.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x H y ) H z )  =  ( x H ( y H z ) ) )
8 isringod.5 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) ) )
9 isringod.6 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )
107, 8, 93jca 1132 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
1110ralrimivvva 2636 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
123raleqdv 2742 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
133, 12raleqbidv 2748 . . . . . 6  |-  ( ph  ->  ( A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
143, 13raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  <->  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) ) )
1511, 14mpbid 201 . . . 4  |-  ( ph  ->  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  ( ( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) ) )
16 isringod.7 . . . . . 6  |-  ( ph  ->  U  e.  X )
17 isringod.8 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X )  ->  ( U H y )  =  y )
18 isringod.9 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X )  ->  (
y H U )  =  y )
1917, 18jca 518 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  (
( U H y )  =  y  /\  ( y H U )  =  y ) )
2019ralrimiva 2626 . . . . . 6  |-  ( ph  ->  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) )
21 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  U  ->  (
x H y )  =  ( U H y ) )
2221eqeq1d 2291 . . . . . . . . 9  |-  ( x  =  U  ->  (
( x H y )  =  y  <->  ( U H y )  =  y ) )
23 oveq2 5866 . . . . . . . . . 10  |-  ( x  =  U  ->  (
y H x )  =  ( y H U ) )
2423eqeq1d 2291 . . . . . . . . 9  |-  ( x  =  U  ->  (
( y H x )  =  y  <->  ( y H U )  =  y ) )
2522, 24anbi12d 691 . . . . . . . 8  |-  ( x  =  U  ->  (
( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  ( ( U H y )  =  y  /\  ( y H U )  =  y ) ) )
2625ralbidv 2563 . . . . . . 7  |-  ( x  =  U  ->  ( A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) ) )
2726rspcev 2884 . . . . . 6  |-  ( ( U  e.  X  /\  A. y  e.  X  ( ( U H y )  =  y  /\  ( y H U )  =  y ) )  ->  E. x  e.  X  A. y  e.  X  ( (
x H y )  =  y  /\  (
y H x )  =  y ) )
2816, 20, 27syl2anc 642 . . . . 5  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
293raleqdv 2742 . . . . . 6  |-  ( ph  ->  ( A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  A. y  e.  ran  G ( ( x H y )  =  y  /\  (
y H x )  =  y ) ) )
303, 29rexeqbidv 2749 . . . . 5  |-  ( ph  ->  ( E. x  e.  X  A. y  e.  X  ( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  (
y H x )  =  y ) ) )
3128, 30mpbid 201 . . . 4  |-  ( ph  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
3215, 31jca 518 . . 3  |-  ( ph  ->  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )
331, 6, 32jca31 520 . 2  |-  ( ph  ->  ( ( G  e. 
AbelOp  /\  H : ( ran  G  X.  ran  G ) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
34 rnexg 4940 . . . . . 6  |-  ( G  e.  AbelOp  ->  ran  G  e.  _V )
351, 34syl 15 . . . . 5  |-  ( ph  ->  ran  G  e.  _V )
36 xpexg 4800 . . . . 5  |-  ( ( ran  G  e.  _V  /\ 
ran  G  e.  _V )  ->  ( ran  G  X.  ran  G )  e. 
_V )
3735, 35, 36syl2anc 642 . . . 4  |-  ( ph  ->  ( ran  G  X.  ran  G )  e.  _V )
38 fex 5749 . . . 4  |-  ( ( H : ( ran 
G  X.  ran  G
) --> ran  G  /\  ( ran  G  X.  ran  G )  e.  _V )  ->  H  e.  _V )
396, 37, 38syl2anc 642 . . 3  |-  ( ph  ->  H  e.  _V )
40 eqid 2283 . . . 4  |-  ran  G  =  ran  G
4140isrngo 21045 . . 3  |-  ( H  e.  _V  ->  ( <. G ,  H >.  e.  RingOps  <->  ( ( G  e.  AbelOp  /\  H : ( ran 
G  X.  ran  G
) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) ) )
4239, 41syl 15 . 2  |-  ( ph  ->  ( <. G ,  H >.  e.  RingOps 
<->  ( ( G  e. 
AbelOp  /\  H : ( ran  G  X.  ran  G ) --> ran  G )  /\  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  (
x H ( y G z ) )  =  ( ( x H y ) G ( x H z ) )  /\  (
( x G y ) H z )  =  ( ( x H z ) G ( y H z ) ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) ) )
4333, 42mpbird 223 1  |-  ( ph  -> 
<. G ,  H >.  e.  RingOps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   <.cop 3643    X. cxp 4687   ran crn 4690   -->wf 5251  (class class class)co 5858   AbelOpcablo 20948   RingOpscrngo 21042
This theorem is referenced by:  rngosn  21071  iscringd  26624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-rngo 21043
  Copyright terms: Public domain W3C validator