Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngoiso Structured version   Unicode version

Theorem isrngoiso 26585
Description: The predicate "is a ring isomorphism between  R and  S." (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1  |-  G  =  ( 1st `  R
)
rngisoval.2  |-  X  =  ran  G
rngisoval.3  |-  J  =  ( 1st `  S
)
rngisoval.4  |-  Y  =  ran  J
Assertion
Ref Expression
isrngoiso  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngIso  S )  <->  ( F  e.  ( R  RngHom  S )  /\  F : X -1-1-onto-> Y
) ) )

Proof of Theorem isrngoiso
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 rngisoval.1 . . . 4  |-  G  =  ( 1st `  R
)
2 rngisoval.2 . . . 4  |-  X  =  ran  G
3 rngisoval.3 . . . 4  |-  J  =  ( 1st `  S
)
4 rngisoval.4 . . . 4  |-  Y  =  ran  J
51, 2, 3, 4rngoisoval 26584 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngIso  S )  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }
)
65eleq2d 2502 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngIso  S )  <->  F  e.  { f  e.  ( R 
RngHom  S )  |  f : X -1-1-onto-> Y } ) )
7 f1oeq1 5657 . . 3  |-  ( f  =  F  ->  (
f : X -1-1-onto-> Y  <->  F : X
-1-1-onto-> Y ) )
87elrab 3084 . 2  |-  ( F  e.  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y } 
<->  ( F  e.  ( R  RngHom  S )  /\  F : X -1-1-onto-> Y ) )
96, 8syl6bb 253 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngIso  S )  <->  ( F  e.  ( R  RngHom  S )  /\  F : X -1-1-onto-> Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   ran crn 4871   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   1stc1st 6339   RingOpscrngo 21955    RngHom crnghom 26567    RngIso crngiso 26568
This theorem is referenced by:  rngoiso1o  26586  rngoisohom  26587  rngoisocnv  26588  rngoisoco  26589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-rngoiso 26583
  Copyright terms: Public domain W3C validator