MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iss Structured version   Unicode version

Theorem iss 5192
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )

Proof of Theorem iss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3344 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  _I  ) )
2 vex 2961 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2961 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 5076 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
54a1i 11 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A ) )
61, 5jcad 521 . . . . . 6  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A ) ) )
7 df-br 4216 . . . . . . . . 9  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
83ideq 5028 . . . . . . . . 9  |-  ( x  _I  y  <->  x  =  y )
97, 8bitr3i 244 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
102eldm2 5071 . . . . . . . . . 10  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
11 opeq2 3987 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  <. x ,  x >.  =  <. x ,  y >. )
1211eleq1d 2504 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
1312biimprcd 218 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  A  ->  ( x  =  y  ->  <. x ,  x >.  e.  A
) )
149, 13syl5bi 210 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  ->  <. x ,  x >.  e.  A
) )
151, 14sylcom 28 . . . . . . . . . . 11  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  x >.  e.  A
) )
1615exlimdv 1647 . . . . . . . . . 10  |-  ( A 
C_  _I  ->  ( E. y <. x ,  y
>.  e.  A  ->  <. x ,  x >.  e.  A
) )
1710, 16syl5bi 210 . . . . . . . . 9  |-  ( A 
C_  _I  ->  ( x  e.  dom  A  ->  <. x ,  x >.  e.  A ) )
1812imbi2d 309 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  dom  A  ->  <. x ,  x >.  e.  A )  <->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
1917, 18syl5ibcom 213 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
x  e.  dom  A  -> 
<. x ,  y >.  e.  A ) ) )
209, 19syl5bi 210 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  _I  ->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
2120imp3a 422 . . . . . 6  |-  ( A 
C_  _I  ->  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
dom  A )  ->  <. x ,  y >.  e.  A ) )
226, 21impbid 185 . . . . 5  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) ) )
233opelres 5154 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  dom  A
)  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) )
2422, 23syl6bbr 256 . . . 4  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (  _I  |`  dom  A
) ) )
2524alrimivv 1643 . . 3  |-  ( A 
C_  _I  ->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) )
26 reli 5005 . . . . 5  |-  Rel  _I
27 relss 4966 . . . . 5  |-  ( A 
C_  _I  ->  ( Rel 
_I  ->  Rel  A )
)
2826, 27mpi 17 . . . 4  |-  ( A 
C_  _I  ->  Rel  A
)
29 relres 5177 . . . 4  |-  Rel  (  _I  |`  dom  A )
30 eqrel 4968 . . . 4  |-  ( ( Rel  A  /\  Rel  (  _I  |`  dom  A
) )  ->  ( A  =  (  _I  |` 
dom  A )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) ) )
3128, 29, 30sylancl 645 . . 3  |-  ( A 
C_  _I  ->  ( A  =  (  _I  |`  dom  A
)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (  _I  |`  dom  A ) ) ) )
3225, 31mpbird 225 . 2  |-  ( A 
C_  _I  ->  A  =  (  _I  |`  dom  A
) )
33 resss 5173 . . 3  |-  (  _I  |`  dom  A )  C_  _I
34 sseq1 3371 . . 3  |-  ( A  =  (  _I  |`  dom  A
)  ->  ( A  C_  _I  <->  (  _I  |`  dom  A
)  C_  _I  )
)
3533, 34mpbiri 226 . 2  |-  ( A  =  (  _I  |`  dom  A
)  ->  A  C_  _I  )
3632, 35impbii 182 1  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726    C_ wss 3322   <.cop 3819   class class class wbr 4215    _I cid 4496   dom cdm 4881    |` cres 4883   Rel wrel 4886
This theorem is referenced by:  funcocnv2  5703  trust  18264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-dm 4891  df-res 4893
  Copyright terms: Public domain W3C validator