MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issect Structured version   Unicode version

Theorem issect 13979
Description: The property " F is a section of  G". (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b  |-  B  =  ( Base `  C
)
issect.h  |-  H  =  (  Hom  `  C
)
issect.o  |-  .x.  =  (comp `  C )
issect.i  |-  .1.  =  ( Id `  C )
issect.s  |-  S  =  (Sect `  C )
issect.c  |-  ( ph  ->  C  e.  Cat )
issect.x  |-  ( ph  ->  X  e.  B )
issect.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
issect  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G (
<. X ,  Y >.  .x. 
X ) F )  =  (  .1.  `  X ) ) ) )

Proof of Theorem issect
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . . 4  |-  B  =  ( Base `  C
)
2 issect.h . . . 4  |-  H  =  (  Hom  `  C
)
3 issect.o . . . 4  |-  .x.  =  (comp `  C )
4 issect.i . . . 4  |-  .1.  =  ( Id `  C )
5 issect.s . . . 4  |-  S  =  (Sect `  C )
6 issect.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 issect.x . . . 4  |-  ( ph  ->  X  e.  B )
8 issect.y . . . 4  |-  ( ph  ->  Y  e.  B )
91, 2, 3, 4, 5, 6, 7, 8sectfval 13977 . . 3  |-  ( ph  ->  ( X S Y )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } )
109breqd 4223 . 2  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
F { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } G ) )
11 oveq12 6090 . . . . . 6  |-  ( ( g  =  G  /\  f  =  F )  ->  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
1211ancoms 440 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
1312eqeq1d 2444 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( g (
<. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X )  <->  ( G
( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X ) ) )
14 eqid 2436 . . . 4  |-  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) }
1513, 14brab2a 4927 . . 3  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) } G  <->  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X ) )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
) )
16 df-3an 938 . . 3  |-  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
)  <->  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X ) )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
) )
1715, 16bitr4i 244 . 2  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) } G  <->  ( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X ) ) )
1810, 17syl6bb 253 1  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G (
<. X ,  Y >.  .x. 
X ) F )  =  (  .1.  `  X ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   <.cop 3817   class class class wbr 4212   {copab 4265   ` cfv 5454  (class class class)co 6081   Basecbs 13469    Hom chom 13540  compcco 13541   Catccat 13889   Idccid 13890  Sectcsect 13970
This theorem is referenced by:  issect2  13980  sectcan  13981  sectco  13982  oppcsect  13999  sectmon  14003  monsect  14004  funcsect  14069  fucsect  14169  invfuc  14171  setcsect  14244  catciso  14262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-sect 13973
  Copyright terms: Public domain W3C validator