MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetid Unicode version

Theorem issetid 4838
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid  |-  ( A  e.  _V  <->  A  _I  A )

Proof of Theorem issetid
StepHypRef Expression
1 ididg 4837 . 2  |-  ( A  e.  _V  ->  A  _I  A )
2 reli 4813 . . 3  |-  Rel  _I
32brrelexi 4729 . 2  |-  ( A  _I  A  ->  A  e.  _V )
41, 3impbii 180 1  |-  ( A  e.  _V  <->  A  _I  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1684   _Vcvv 2788   class class class wbr 4023    _I cid 4304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696
  Copyright terms: Public domain W3C validator