MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isso2i Unicode version

Theorem isso2i 4499
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
isso2i.1  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
isso2i.2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
Assertion
Ref Expression
isso2i  |-  R  Or  A
Distinct variable groups:    x, y,
z, R    x, A, y, z

Proof of Theorem isso2i
StepHypRef Expression
1 equid 1684 . . . . 5  |-  x  =  x
21orci 380 . . . 4  |-  ( x  =  x  \/  x R x )
3 eleq1 2468 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
43anbi2d 685 . . . . . 6  |-  ( y  =  x  ->  (
( x  e.  A  /\  y  e.  A
)  <->  ( x  e.  A  /\  x  e.  A ) ) )
5 equequ2 1694 . . . . . . . 8  |-  ( y  =  x  ->  (
x  =  y  <->  x  =  x ) )
6 breq1 4179 . . . . . . . 8  |-  ( y  =  x  ->  (
y R x  <->  x R x ) )
75, 6orbi12d 691 . . . . . . 7  |-  ( y  =  x  ->  (
( x  =  y  \/  y R x )  <->  ( x  =  x  \/  x R x ) ) )
8 breq2 4180 . . . . . . . 8  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
98notbid 286 . . . . . . 7  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
107, 9bibi12d 313 . . . . . 6  |-  ( y  =  x  ->  (
( ( x  =  y  \/  y R x )  <->  -.  x R y )  <->  ( (
x  =  x  \/  x R x )  <->  -.  x R x ) ) )
114, 10imbi12d 312 . . . . 5  |-  ( y  =  x  ->  (
( ( x  e.  A  /\  y  e.  A )  ->  (
( x  =  y  \/  y R x )  <->  -.  x R
y ) )  <->  ( (
x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) ) ) )
12 isso2i.1 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
1312con2bid 320 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x  =  y  \/  y R x )  <->  -.  x R y ) )
1411, 13chvarv 2067 . . . 4  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) )
152, 14mpbii 203 . . 3  |-  ( ( x  e.  A  /\  x  e.  A )  ->  -.  x R x )
1615anidms 627 . 2  |-  ( x  e.  A  ->  -.  x R x )
17 isso2i.2 . 2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
1813biimprd 215 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( -.  x R y  ->  ( x  =  y  \/  y R x ) ) )
19 3orass 939 . . . 4  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( x R y  \/  ( x  =  y  \/  y R x ) ) )
20 df-or 360 . . . 4  |-  ( ( x R y  \/  ( x  =  y  \/  y R x ) )  <->  ( -.  x R y  ->  (
x  =  y  \/  y R x ) ) )
2119, 20bitri 241 . . 3  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( -.  x R y  ->  ( x  =  y  \/  y R x ) ) )
2218, 21sylibr 204 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  x  =  y  \/  y R x ) )
2316, 17, 22issoi 4498 1  |-  R  Or  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    /\ w3a 936    e. wcel 1721   class class class wbr 4176    Or wor 4466
This theorem is referenced by:  ltsonq  8806  ltsosr  8929  ltso  9116  xrltso  10694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-br 4177  df-po 4467  df-so 4468
  Copyright terms: Public domain W3C validator