MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issref Structured version   Unicode version

Theorem issref 5250
Description: Two ways to state a relation is reflexive. Adapted from Tarski. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
issref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem issref
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 2712 . 2  |-  ( A. x  e.  A  x R x  <->  A. x ( x  e.  A  ->  x R x ) )
2 vex 2961 . . . . 5  |-  x  e. 
_V
3 opelresi 5161 . . . . 5  |-  ( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
42, 3ax-mp 5 . . . 4  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A )
5 df-br 4216 . . . . 5  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
65bicomi 195 . . . 4  |-  ( <.
x ,  x >.  e.  R  <->  x R x )
74, 6imbi12i 318 . . 3  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  ( x  e.  A  ->  x R x ) )
87albii 1576 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  A  ->  x R x ) )
9 ralidm 3733 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
10 ralv 2971 . . . . . 6  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
119, 10bitri 242 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
12 df-ral 2712 . . . . . . . . 9  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  A. x
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
13 pm2.27 38 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) ) )
14 opelresg 5156 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  <-> 
( <. x ,  z
>.  e.  _I  /\  x  e.  A ) ) )
15 df-br 4216 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  <->  <. x ,  z >.  e.  _I  )
16 vex 2961 . . . . . . . . . . . . . . . . . . 19  |-  z  e. 
_V
1716ideq 5028 . . . . . . . . . . . . . . . . . 18  |-  ( x  _I  z  <->  x  =  z )
18 opelresi 5161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  <-> 
x  e.  A ) )
19 pm2.27 38 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  x >.  e.  R ) )
20 opeq2 3987 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  <. x ,  x >.  =  <. x ,  z >. )
2120eleq1d 2504 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( <. x ,  x >.  e.  R  <->  <. x ,  z
>.  e.  R ) )
2221biimpcd 217 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
x ,  x >.  e.  R  ->  ( x  =  z  ->  <. x ,  z >.  e.  R
) )
2319, 22syl6 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2418, 23syl6bir 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (
x  =  z  ->  <. x ,  z >.  e.  R ) ) ) )
2524pm2.43i 46 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( x  =  z  ->  <. x ,  z
>.  e.  R ) ) )
2625com3r 76 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2717, 26sylbi 189 . . . . . . . . . . . . . . . . 17  |-  ( x  _I  z  ->  (
x  e.  A  -> 
( ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R
) ) )
2815, 27sylbir 206 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  z >.  e.  _I  ->  ( x  e.  A  ->  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
2928imp 420 . . . . . . . . . . . . . . 15  |-  ( (
<. x ,  z >.  e.  _I  /\  x  e.  A )  ->  (
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) )
3014, 29syl6bi 221 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  ( ( <.
x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  <. x ,  z >.  e.  R ) ) )
3130com3r 76 . . . . . . . . . . . . 13  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  -> 
( z  e.  _V  ->  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
3231ralrimiv 2790 . . . . . . . . . . . 12  |-  ( (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3313, 32syl6 32 . . . . . . . . . . 11  |-  ( x  e.  _V  ->  (
( x  e.  _V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) ) )
342, 33ax-mp 5 . . . . . . . . . 10  |-  ( ( x  e.  _V  ->  (
<. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3534sps 1771 . . . . . . . . 9  |-  ( A. x ( x  e. 
_V  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3612, 35sylbi 189 . . . . . . . 8  |-  ( A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. z  e.  _V  ( <. x ,  z
>.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
3736ralimi 2783 . . . . . . 7  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. x  e.  _V  A. z  e. 
_V  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) )
38 eleq1 2498 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  (  _I  |`  A )  <->  <. x ,  z >.  e.  (  _I  |`  A ) ) )
39 eleq1 2498 . . . . . . . . 9  |-  ( y  =  <. x ,  z
>.  ->  ( y  e.  R  <->  <. x ,  z
>.  e.  R ) )
4038, 39imbi12d 313 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  ( ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  ( <. x ,  z >.  e.  (  _I  |`  A )  -> 
<. x ,  z >.  e.  R ) ) )
4140ralxp 5019 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. x  e.  _V  A. z  e.  _V  ( <. x ,  z >.  e.  (  _I  |`  A )  ->  <. x ,  z
>.  e.  R ) )
4237, 41sylibr 205 . . . . . 6  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
43 df-ral 2712 . . . . . . 7  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  <->  A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) ) )
44 relres 5177 . . . . . . . . . . . 12  |-  Rel  (  _I  |`  A )
45 df-rel 4888 . . . . . . . . . . . 12  |-  ( Rel  (  _I  |`  A )  <-> 
(  _I  |`  A ) 
C_  ( _V  X.  _V ) )
4644, 45mpbi 201 . . . . . . . . . . 11  |-  (  _I  |`  A )  C_  ( _V  X.  _V )
4746sseli 3346 . . . . . . . . . 10  |-  ( y  e.  (  _I  |`  A )  ->  y  e.  ( _V  X.  _V )
)
4847ancri 537 . . . . . . . . 9  |-  ( y  e.  (  _I  |`  A )  ->  ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
) )
49 pm3.31 434 . . . . . . . . 9  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( ( y  e.  ( _V  X.  _V )  /\  y  e.  (  _I  |`  A )
)  ->  y  e.  R ) )
5048, 49syl5 31 . . . . . . . 8  |-  ( ( y  e.  ( _V 
X.  _V )  ->  (
y  e.  (  _I  |`  A )  ->  y  e.  R ) )  -> 
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5150alimi 1569 . . . . . . 7  |-  ( A. y ( y  e.  ( _V  X.  _V )  ->  ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5243, 51sylbi 189 . . . . . 6  |-  ( A. y  e.  ( _V  X.  _V ) ( y  e.  (  _I  |`  A )  ->  y  e.  R
)  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5342, 52syl 16 . . . . 5  |-  ( A. x  e.  _V  A. x  e.  _V  ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
5411, 53sylbir 206 . . . 4  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  A. y
( y  e.  (  _I  |`  A )  ->  y  e.  R ) )
55 dfss2 3339 . . . 4  |-  ( (  _I  |`  A )  C_  R  <->  A. y ( y  e.  (  _I  |`  A )  ->  y  e.  R
) )
5654, 55sylibr 205 . . 3  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  ->  (  _I  |`  A )  C_  R )
57 ssel 3344 . . . 4  |-  ( (  _I  |`  A )  C_  R  ->  ( <. x ,  x >.  e.  (  _I  |`  A )  -> 
<. x ,  x >.  e.  R ) )
5857alrimiv 1642 . . 3  |-  ( (  _I  |`  A )  C_  R  ->  A. x
( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R ) )
5956, 58impbii 182 . 2  |-  ( A. x ( <. x ,  x >.  e.  (  _I  |`  A )  ->  <. x ,  x >.  e.  R )  <->  (  _I  |`  A )  C_  R
)
601, 8, 593bitr2ri 267 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    C_ wss 3322   <.cop 3819   class class class wbr 4215    _I cid 4496    X. cxp 4879    |` cres 4883   Rel wrel 4886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-iun 4097  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-res 4893
  Copyright terms: Public domain W3C validator