MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Unicode version

Theorem issubc3 14048
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 14751, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h  |-  H  =  (  Homf 
`  C )
issubc3.i  |-  .1.  =  ( Id `  C )
issubc3.1  |-  D  =  ( C  |`cat  J )
issubc3.c  |-  ( ph  ->  C  e.  Cat )
issubc3.a  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
Assertion
Ref Expression
issubc3  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Distinct variable groups:    x, C    x, D    x, H    ph, x    x, J    x, S
Allowed substitution hint:    .1. ( x)

Proof of Theorem issubc3
Dummy variables  f 
g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 449 . . . 4  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  e.  (Subcat `  C ) )
2 issubc3.h . . . 4  |-  H  =  (  Homf 
`  C )
31, 2subcssc 14039 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  C_cat  H )
41adantr 453 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  e.  (Subcat `  C )
)
5 issubc3.a . . . . . 6  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
65ad2antrr 708 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  Fn  ( S  X.  S
) )
7 simpr 449 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  x  e.  S )
8 issubc3.i . . . . 5  |-  .1.  =  ( Id `  C )
94, 6, 7, 8subcidcl 14043 . . . 4  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  (  .1.  `  x )  e.  ( x J x ) )
109ralrimiva 2791 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
11 issubc3.1 . . . 4  |-  D  =  ( C  |`cat  J )
1211, 1subccat 14047 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  D  e.  Cat )
133, 10, 123jca 1135 . 2  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e. 
Cat ) )
14 simpr1 964 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  C_cat  H )
15 simpr2 965 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
16 eqid 2438 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
17 eqid 2438 . . . . . . . . . 10  |-  (  Hom  `  D )  =  (  Hom  `  D )
18 eqid 2438 . . . . . . . . . 10  |-  (comp `  D )  =  (comp `  D )
19 simplrr 739 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  D  e.  Cat )
20 simprl1 1003 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  S )
21 eqid 2438 . . . . . . . . . . . 12  |-  ( Base `  C )  =  (
Base `  C )
22 issubc3.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Cat )
2322ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  C  e.  Cat )
245ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  Fn  ( S  X.  S
) )
252, 21homffn 13921 . . . . . . . . . . . . . 14  |-  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) )
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
27 simplrl 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  C_cat  H )
2824, 26, 27ssc1 14023 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  C_  ( Base `  C
) )
2911, 21, 23, 24, 28rescbas 14031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  =  ( Base `  D
) )
3020, 29eleqtrd 2514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  ( Base `  D
) )
31 simprl2 1004 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  S )
3231, 29eleqtrd 2514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  ( Base `  D
) )
33 simprl3 1005 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  S )
3433, 29eleqtrd 2514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  ( Base `  D
) )
35 simprrl 742 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x J y ) )
3611, 21, 23, 24, 28reschom 14032 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  =  (  Hom  `  D
) )
3736oveqd 6100 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J y )  =  ( x (  Hom  `  D )
y ) )
3835, 37eleqtrd 2514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x (  Hom  `  D ) y ) )
39 simprrr 743 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y J z ) )
4036oveqd 6100 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
y J z )  =  ( y (  Hom  `  D )
z ) )
4139, 40eleqtrd 2514 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y (  Hom  `  D ) z ) )
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 13912 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  D ) z ) f )  e.  ( x (  Hom  `  D
) z ) )
43 eqid 2438 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
4411, 21, 23, 24, 28, 43rescco 14034 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (comp `  C )  =  (comp `  D ) )
4544oveqd 6100 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  ( <. x ,  y >.
(comp `  C )
z )  =  (
<. x ,  y >.
(comp `  D )
z ) )
4645oveqd 6100 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) )
4736oveqd 6100 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J z )  =  ( x (  Hom  `  D )
z ) )
4842, 46, 473eltr4d 2519 . . . . . . . 8  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
4948anassrs 631 . . . . . . 7  |-  ( ( ( ( ph  /\  ( J  C_cat  H  /\  D  e.  Cat )
)  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  /\  ( f  e.  ( x J y )  /\  g  e.  ( y J z ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
5049ralrimivva 2800 . . . . . 6  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S
) )  ->  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
5150ralrimivvva 2801 . . . . 5  |-  ( (
ph  /\  ( J  C_cat  H  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
52513adantr2 1118 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
53 r19.26 2840 . . . 4  |-  ( A. x  e.  S  (
(  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )  <->  ( A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5415, 52, 53sylanbrc 647 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5522adantr 453 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  C  e.  Cat )
565adantr 453 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  Fn  ( S  X.  S
) )
572, 8, 43, 55, 56issubc2 14038 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  ( J  e.  (Subcat `  C
)  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) ) ) )
5814, 54, 57mpbir2and 890 . 2  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  e.  (Subcat `  C )
)
5913, 58impbida 807 1  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   <.cop 3819   class class class wbr 4214    X. cxp 4878    Fn wfn 5451   ` cfv 5456  (class class class)co 6083   Basecbs 13471    Hom chom 13542  compcco 13543   Catccat 13891   Idccid 13892    Homf chomf 13893    C_cat cssc 14009    |`cat cresc 14010  Subcatcsubc 14011
This theorem is referenced by:  subsubc  14052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-hom 13555  df-cco 13556  df-cat 13895  df-cid 13896  df-homf 13897  df-ssc 14012  df-resc 14013  df-subc 14014
  Copyright terms: Public domain W3C validator