MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Unicode version

Theorem issubc3 13723
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 14426, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h  |-  H  =  (  Homf 
`  C )
issubc3.i  |-  .1.  =  ( Id `  C )
issubc3.1  |-  D  =  ( C  |`cat  J )
issubc3.c  |-  ( ph  ->  C  e.  Cat )
issubc3.a  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
Assertion
Ref Expression
issubc3  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Distinct variable groups:    x, C    x, D    x, H    ph, x    x, J    x, S
Allowed substitution hint:    .1. ( x)

Proof of Theorem issubc3
Dummy variables  f 
g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  e.  (Subcat `  C ) )
2 issubc3.h . . . 4  |-  H  =  (  Homf 
`  C )
31, 2subcssc 13714 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  C_cat  H )
41adantr 451 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  e.  (Subcat `  C )
)
5 issubc3.a . . . . . 6  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
65ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  Fn  ( S  X.  S
) )
7 simpr 447 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  x  e.  S )
8 issubc3.i . . . . 5  |-  .1.  =  ( Id `  C )
94, 6, 7, 8subcidcl 13718 . . . 4  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  (  .1.  `  x )  e.  ( x J x ) )
109ralrimiva 2626 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
11 issubc3.1 . . . 4  |-  D  =  ( C  |`cat  J )
1211, 1subccat 13722 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  D  e.  Cat )
133, 10, 123jca 1132 . 2  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e. 
Cat ) )
14 simpr1 961 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  C_cat  H )
15 simpr2 962 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
16 eqid 2283 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
17 eqid 2283 . . . . . . . . . 10  |-  (  Hom  `  D )  =  (  Hom  `  D )
18 eqid 2283 . . . . . . . . . 10  |-  (comp `  D )  =  (comp `  D )
19 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  D  e.  Cat )
20 simprl1 1000 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  S )
21 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  C )  =  (
Base `  C )
22 issubc3.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Cat )
2322ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  C  e.  Cat )
245ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  Fn  ( S  X.  S
) )
252, 21homffn 13596 . . . . . . . . . . . . . 14  |-  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) )
2625a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
27 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  C_cat  H )
2824, 26, 27ssc1 13698 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  C_  ( Base `  C
) )
2911, 21, 23, 24, 28rescbas 13706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  =  ( Base `  D
) )
3020, 29eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  ( Base `  D
) )
31 simprl2 1001 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  S )
3231, 29eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  ( Base `  D
) )
33 simprl3 1002 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  S )
3433, 29eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  ( Base `  D
) )
35 simprrl 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x J y ) )
3611, 21, 23, 24, 28reschom 13707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  =  (  Hom  `  D
) )
3736oveqd 5875 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J y )  =  ( x (  Hom  `  D )
y ) )
3835, 37eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x (  Hom  `  D ) y ) )
39 simprrr 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y J z ) )
4036oveqd 5875 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
y J z )  =  ( y (  Hom  `  D )
z ) )
4139, 40eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y (  Hom  `  D ) z ) )
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 13587 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  D ) z ) f )  e.  ( x (  Hom  `  D
) z ) )
43 eqid 2283 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
4411, 21, 23, 24, 28, 43rescco 13709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (comp `  C )  =  (comp `  D ) )
4544oveqd 5875 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  ( <. x ,  y >.
(comp `  C )
z )  =  (
<. x ,  y >.
(comp `  D )
z ) )
4645oveqd 5875 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) )
4736oveqd 5875 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J z )  =  ( x (  Hom  `  D )
z ) )
4842, 46, 473eltr4d 2364 . . . . . . . 8  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
4948anassrs 629 . . . . . . 7  |-  ( ( ( ( ph  /\  ( J  C_cat  H  /\  D  e.  Cat )
)  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  /\  ( f  e.  ( x J y )  /\  g  e.  ( y J z ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
5049ralrimivva 2635 . . . . . 6  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S
) )  ->  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
5150ralrimivvva 2636 . . . . 5  |-  ( (
ph  /\  ( J  C_cat  H  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
52513adantr2 1115 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
53 r19.26 2675 . . . 4  |-  ( A. x  e.  S  (
(  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )  <->  ( A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5415, 52, 53sylanbrc 645 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5522adantr 451 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  C  e.  Cat )
565adantr 451 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  Fn  ( S  X.  S
) )
572, 8, 43, 55, 56issubc2 13713 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  ( J  e.  (Subcat `  C
)  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) ) ) )
5814, 54, 57mpbir2and 888 . 2  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  e.  (Subcat `  C )
)
5913, 58impbida 805 1  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   class class class wbr 4023    X. cxp 4687    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566   Idccid 13567    Homf chomf 13568    C_cat cssc 13684    |`cat cresc 13685  Subcatcsubc 13686
This theorem is referenced by:  subsubc  13727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-hom 13232  df-cco 13233  df-cat 13570  df-cid 13571  df-homf 13572  df-ssc 13687  df-resc 13688  df-subc 13689
  Copyright terms: Public domain W3C validator