Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Unicode version

Theorem issubdrg 15619
 Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s s
issubdrg.z
issubdrg.i
Assertion
Ref Expression
issubdrg SubRing
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 735 . . . . 5 SubRing SubRing
2 simpr 447 . . . . . . . . 9 SubRing
3 eldifsn 3783 . . . . . . . . 9
42, 3sylib 188 . . . . . . . 8 SubRing
54simpld 445 . . . . . . 7 SubRing
6 issubdrg.s . . . . . . . . 9 s
76subrgbas 15603 . . . . . . . 8 SubRing
81, 7syl 15 . . . . . . 7 SubRing
95, 8eleqtrd 2392 . . . . . 6 SubRing
104simprd 449 . . . . . . 7 SubRing
11 issubdrg.z . . . . . . . . 9
126, 11subrg0 15601 . . . . . . . 8 SubRing
131, 12syl 15 . . . . . . 7 SubRing
1410, 13neeqtrd 2501 . . . . . 6 SubRing
15 eqid 2316 . . . . . . . 8
16 eqid 2316 . . . . . . . 8 Unit Unit
17 eqid 2316 . . . . . . . 8
1815, 16, 17drngunit 15566 . . . . . . 7 Unit
1918ad2antlr 707 . . . . . 6 SubRing Unit
209, 14, 19mpbir2and 888 . . . . 5 SubRing Unit
21 issubdrg.i . . . . . 6
22 eqid 2316 . . . . . 6
236, 21, 16, 22subrginv 15610 . . . . 5 SubRing Unit
241, 20, 23syl2anc 642 . . . 4 SubRing
256subrgrng 15597 . . . . . . 7 SubRing
261, 25syl 15 . . . . . 6 SubRing
2716, 22, 15rnginvcl 15507 . . . . . 6 Unit
2826, 20, 27syl2anc 642 . . . . 5 SubRing
2928, 8eleqtrrd 2393 . . . 4 SubRing
3024, 29eqeltrd 2390 . . 3 SubRing
3130ralrimiva 2660 . 2 SubRing
3225ad2antlr 707 . . 3 SubRing
33 eqid 2316 . . . . . . . . . 10 Unit Unit
346, 33, 16subrguss 15609 . . . . . . . . 9 SubRing Unit Unit
3534ad2antlr 707 . . . . . . . 8 SubRing Unit Unit
36 eqid 2316 . . . . . . . . . . 11
3736, 33, 11isdrng 15565 . . . . . . . . . 10 Unit
3837simprbi 450 . . . . . . . . 9 Unit
3938ad2antrr 706 . . . . . . . 8 SubRing Unit
4035, 39sseqtrd 3248 . . . . . . 7 SubRing Unit
4115, 16unitss 15491 . . . . . . . 8 Unit
427ad2antlr 707 . . . . . . . 8 SubRing
4341, 42syl5sseqr 3261 . . . . . . 7 SubRing Unit
4440, 43ssind 3427 . . . . . 6 SubRing Unit
4536subrgss 15595 . . . . . . . 8 SubRing
4645ad2antlr 707 . . . . . . 7 SubRing
47 difin2 3464 . . . . . . 7
4846, 47syl 15 . . . . . 6 SubRing
4944, 48sseqtr4d 3249 . . . . 5 SubRing Unit
5045ad2antlr 707 . . . . . . . . . . . 12 SubRing
51 simprl 732 . . . . . . . . . . . . . 14 SubRing
5251, 3sylib 188 . . . . . . . . . . . . 13 SubRing
5352simpld 445 . . . . . . . . . . . 12 SubRing
5450, 53sseldd 3215 . . . . . . . . . . 11 SubRing
5552simprd 449 . . . . . . . . . . 11 SubRing
5636, 33, 11drngunit 15566 . . . . . . . . . . . 12 Unit
5756ad2antrr 706 . . . . . . . . . . 11 SubRing Unit
5854, 55, 57mpbir2and 888 . . . . . . . . . 10 SubRing Unit
59 simprr 733 . . . . . . . . . 10 SubRing
606, 33, 16, 21subrgunit 15612 . . . . . . . . . . 11 SubRing Unit Unit
6160ad2antlr 707 . . . . . . . . . 10 SubRing Unit Unit
6258, 53, 59, 61mpbir3and 1135 . . . . . . . . 9 SubRing Unit
6362expr 598 . . . . . . . 8 SubRing Unit
6463ralimdva 2655 . . . . . . 7 SubRing Unit
6564imp 418 . . . . . 6 SubRing Unit
66 dfss3 3204 . . . . . 6 Unit Unit
6765, 66sylibr 203 . . . . 5 SubRing Unit
6849, 67eqssd 3230 . . . 4 SubRing Unit
6912ad2antlr 707 . . . . . 6 SubRing
7069sneqd 3687 . . . . 5 SubRing
7142, 70difeq12d 3329 . . . 4 SubRing
7268, 71eqtrd 2348 . . 3 SubRing Unit
7315, 16, 17isdrng 15565 . . 3 Unit
7432, 72, 73sylanbrc 645 . 2 SubRing
7531, 74impbida 805 1 SubRing
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wceq 1633   wcel 1701   wne 2479  wral 2577   cdif 3183   cin 3185   wss 3186  csn 3674  cfv 5292  (class class class)co 5900  cbs 13195   ↾s cress 13196  c0g 13449  crg 15386  Unitcui 15470  cinvr 15502  cdr 15561  SubRingcsubrg 15590 This theorem is referenced by:  cnsubdrglem  16478  issdrg2  26654 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-tpos 6276  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-0g 13453  df-mnd 14416  df-grp 14538  df-minusg 14539  df-subg 14667  df-mgp 15375  df-rng 15389  df-ur 15391  df-oppr 15454  df-dvdsr 15472  df-unit 15473  df-invr 15503  df-drng 15563  df-subrg 15592
 Copyright terms: Public domain W3C validator