MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Unicode version

Theorem issubg4 14654
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b  |-  B  =  ( Base `  G
)
issubg4.p  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
issubg4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Distinct variable groups:    x, y, B    x, G, y    x,  .- , y    x, S, y

Proof of Theorem issubg4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4  |-  B  =  ( Base `  G
)
21subgss 14638 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
3 eqid 2296 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43subg0cl 14645 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
5 ne0i 3474 . . . 4  |-  ( ( 0g `  G )  e.  S  ->  S  =/=  (/) )
64, 5syl 15 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  =/=  (/) )
7 issubg4.p . . . . . 6  |-  .-  =  ( -g `  G )
87subgsubcl 14648 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .-  y )  e.  S )
983expb 1152 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .-  y )  e.  S
)
109ralrimivva 2648 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
112, 6, 103jca 1132 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
) )
12 simplrl 736 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  S  C_  B
)
13 simplrr 737 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  S  =/=  (/) )
14 simprr 733 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
15 r19.2z 3556 . . . . . . . . . . . . 13  |-  ( ( S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
1614, 15sylan 457 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
17 oveq2 5882 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  x  ->  (
x  .-  y )  =  ( x  .-  x ) )
1817eleq1d 2362 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
( x  .-  y
)  e.  S  <->  ( x  .-  x )  e.  S
) )
1918rspcv 2893 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x  .-  x )  e.  S ) )
2019adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( x 
.-  x )  e.  S ) )
21 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  S  C_  B )
2221sselda 3193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  x  e.  B )
231, 3, 7grpsubid 14566 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .-  x
)  =  ( 0g
`  G ) )
2423adantlr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  B
)  ->  ( x  .-  x )  =  ( 0g `  G ) )
2522, 24syldan 456 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( x  .-  x )  =  ( 0g `  G ) )
2625eleq1d 2362 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( (
x  .-  x )  e.  S  <->  ( 0g `  G )  e.  S
) )
2720, 26sylibd 205 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( 0g
`  G )  e.  S ) )
2827rexlimdva 2680 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  -> 
( E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  ( 0g `  G
)  e.  S ) )
2928imp 418 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( 0g `  G )  e.  S
)
3016, 29syldan 456 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( 0g `  G )  e.  S
)
31 simpr 447 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
32 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0g `  G )  ->  (
x  .-  y )  =  ( ( 0g
`  G )  .-  y ) )
3332eleq1d 2362 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  G )  ->  (
( x  .-  y
)  e.  S  <->  ( ( 0g `  G )  .-  y )  e.  S
) )
3433ralbidv 2576 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  G )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  <->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
) )
3534rspcv 2893 . . . . . . . . . . 11  |-  ( ( 0g `  G )  e.  S  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
) )
3630, 31, 35sylc 56 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
)
371, 3grpidcl 14526 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
3837ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( 0g `  G )  e.  B
)
3921sselda 3193 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  y  e.  B )
40 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( +g  `  G )  =  ( +g  `  G )
41 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( inv g `  G )  =  ( inv g `  G )
421, 40, 41, 7grpsubval 14541 . . . . . . . . . . . . . . 15  |-  ( ( ( 0g `  G
)  e.  B  /\  y  e.  B )  ->  ( ( 0g `  G )  .-  y
)  =  ( ( 0g `  G ) ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) )
4338, 39, 42syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G )  .-  y )  =  ( ( 0g `  G
) ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) )
44 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  G  e.  Grp )
451, 41grpinvcl 14543 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( inv g `  G ) `  y
)  e.  B )
4644, 39, 45syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( inv g `  G ) `
 y )  e.  B )
471, 40, 3grplid 14528 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( ( inv g `  G ) `  y
)  e.  B )  ->  ( ( 0g
`  G ) ( +g  `  G ) ( ( inv g `  G ) `  y
) )  =  ( ( inv g `  G ) `  y
) )
4844, 46, 47syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( inv g `  G ) `  y
) )  =  ( ( inv g `  G ) `  y
) )
4943, 48eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G )  .-  y )  =  ( ( inv g `  G ) `  y
) )
5049eleq1d 2362 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( (
( 0g `  G
)  .-  y )  e.  S  <->  ( ( inv g `  G ) `
 y )  e.  S ) )
5150ralbidva 2572 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  -> 
( A. y  e.  S  ( ( 0g
`  G )  .-  y )  e.  S  <->  A. y  e.  S  ( ( inv g `  G ) `  y
)  e.  S ) )
5251adantr 451 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( A. y  e.  S  (
( 0g `  G
)  .-  y )  e.  S  <->  A. y  e.  S  ( ( inv g `  G ) `  y
)  e.  S ) )
5336, 52mpbid 201 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( ( inv g `  G ) `
 y )  e.  S )
54 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( inv g `  G ) `  y
)  =  ( ( inv g `  G
) `  z )
)
5554eleq1d 2362 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( inv g `  G ) `  y
)  e.  S  <->  ( ( inv g `  G ) `
 z )  e.  S ) )
5655rspccva 2896 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  S  ( ( inv g `  G ) `  y
)  e.  S  /\  z  e.  S )  ->  ( ( inv g `  G ) `  z
)  e.  S )
5756ad2ant2l 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( ( inv g `  G ) `  z
)  e.  S )
58 oveq2 5882 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( inv g `  G ) `
 z )  -> 
( x  .-  y
)  =  ( x 
.-  ( ( inv g `  G ) `
 z ) ) )
5958eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( inv g `  G ) `
 z )  -> 
( ( x  .-  y )  e.  S  <->  ( x  .-  ( ( inv g `  G
) `  z )
)  e.  S ) )
6059rspcv 2893 . . . . . . . . . . . . . . 15  |-  ( ( ( inv g `  G ) `  z
)  e.  S  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  (
( inv g `  G ) `  z
) )  e.  S
) )
6157, 60syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  (
( inv g `  G ) `  z
) )  e.  S
) )
62 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  G  e.  Grp )
63 simplrl 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( inv g `  G ) `
 y )  e.  S )  ->  S  C_  B )
6463adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  S  C_  B )
65 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  x  e.  S )
6664, 65sseldd 3194 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  x  e.  B )
67 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
6864, 67sseldd 3194 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
z  e.  B )
691, 40, 7, 41, 62, 66, 68grpsubinv 14557 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( x  .-  (
( inv g `  G ) `  z
) )  =  ( x ( +g  `  G
) z ) )
7069eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( ( x  .-  ( ( inv g `  G ) `  z
) )  e.  S  <->  ( x ( +g  `  G
) z )  e.  S ) )
7161, 70sylibd 205 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x ( +g  `  G ) z )  e.  S ) )
7271anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( inv g `  G ) `  y
)  e.  S )  /\  x  e.  S
)  /\  z  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x ( +g  `  G
) z )  e.  S ) )
7372ralrimdva 2646 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
) )
7473ralimdva 2634 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( inv g `  G ) `
 y )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
) )
7574impancom 427 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( A. y  e.  S  (
( inv g `  G ) `  y
)  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x ( +g  `  G ) z )  e.  S ) )
7653, 75mpd 14 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. x  e.  S  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
)
77 oveq1 5881 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x ( +g  `  G
) z )  =  ( y ( +g  `  G ) z ) )
7877eleq1d 2362 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x ( +g  `  G ) z )  e.  S  <->  ( y
( +g  `  G ) z )  e.  S
) )
7978ralbidv 2576 . . . . . . . . 9  |-  ( x  =  y  ->  ( A. z  e.  S  ( x ( +g  `  G ) z )  e.  S  <->  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
) )
8079cbvralv 2777 . . . . . . . 8  |-  ( A. x  e.  S  A. z  e.  S  (
x ( +g  `  G
) z )  e.  S  <->  A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S )
8176, 80sylib 188 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
)
82 r19.26 2688 . . . . . . 7  |-  ( A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( inv g `  G ) `  y
)  e.  S )  <-> 
( A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  A. y  e.  S  ( ( inv g `  G ) `  y
)  e.  S ) )
8381, 53, 82sylanbrc 645 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( inv g `  G
) `  y )  e.  S ) )
8412, 13, 833jca 1132 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  ( y
( +g  `  G ) z )  e.  S  /\  ( ( inv g `  G ) `  y
)  e.  S ) ) )
8584exp42 594 . . . 4  |-  ( G  e.  Grp  ->  ( S  C_  B  ->  ( S  =/=  (/)  ->  ( A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S  ->  ( S 
C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( inv g `  G
) `  y )  e.  S ) ) ) ) ) )
86853impd 1165 . . 3  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( inv g `  G
) `  y )  e.  S ) ) ) )
871, 40, 41issubg2 14652 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( inv g `  G ) `  y
)  e.  S ) ) ) )
8886, 87sylibrd 225 . 2  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  S  e.  (SubGrp `  G )
) )
8911, 88impbid2 195 1  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379   -gcsg 14381  SubGrpcsubg 14631
This theorem is referenced by:  dprdsubg  15275  clssubg  17807  tgpconcomp  17811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634
  Copyright terms: Public domain W3C validator