MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgo Structured version   Unicode version

Theorem issubgo 21896
Description: The predicate "is a subgroup of  G." (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 12-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
issubgo  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)

Proof of Theorem issubgo
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 inss2 3564 . . . . . . 7  |-  ( GrpOp  i^i 
~P G )  C_  ~P G
2 pwexg 4386 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ~P G  e.  _V )
3 ssexg 4352 . . . . . . 7  |-  ( ( ( GrpOp  i^i  ~P G
)  C_  ~P G  /\  ~P G  e.  _V )  ->  ( GrpOp  i^i  ~P G )  e.  _V )
41, 2, 3sylancr 646 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( GrpOp  i^i 
~P G )  e. 
_V )
5 pweq 3804 . . . . . . . 8  |-  ( g  =  G  ->  ~P g  =  ~P G
)
65ineq2d 3544 . . . . . . 7  |-  ( g  =  G  ->  ( GrpOp  i^i  ~P g )  =  ( GrpOp  i^i  ~P G ) )
7 df-subgo 21895 . . . . . . 7  |-  SubGrpOp  =  ( g  e.  GrpOp  |->  ( GrpOp  i^i 
~P g ) )
86, 7fvmptg 5807 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( GrpOp  i^i  ~P G )  e.  _V )  -> 
( SubGrpOp `  G )  =  ( GrpOp  i^i  ~P G ) )
94, 8mpdan 651 . . . . 5  |-  ( G  e.  GrpOp  ->  ( SubGrpOp `  G )  =  (
GrpOp  i^i  ~P G ) )
109eleq2d 2505 . . . 4  |-  ( G  e.  GrpOp  ->  ( H  e.  ( SubGrpOp `  G )  <->  H  e.  ( GrpOp  i^i  ~P G ) ) )
11 elin 3532 . . . . 5  |-  ( H  e.  ( GrpOp  i^i  ~P G )  <->  ( H  e.  GrpOp  /\  H  e.  ~P G ) )
12 elpwg 3808 . . . . . 6  |-  ( H  e.  GrpOp  ->  ( H  e.  ~P G  <->  H  C_  G
) )
1312pm5.32i 620 . . . . 5  |-  ( ( H  e.  GrpOp  /\  H  e.  ~P G )  <->  ( H  e.  GrpOp  /\  H  C_  G
) )
1411, 13bitri 242 . . . 4  |-  ( H  e.  ( GrpOp  i^i  ~P G )  <->  ( H  e.  GrpOp  /\  H  C_  G
) )
1510, 14syl6bb 254 . . 3  |-  ( G  e.  GrpOp  ->  ( H  e.  ( SubGrpOp `  G )  <->  ( H  e.  GrpOp  /\  H  C_  G ) ) )
1615pm5.32i 620 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  ( SubGrpOp `  G )
)  <->  ( G  e. 
GrpOp  /\  ( H  e. 
GrpOp  /\  H  C_  G
) ) )
177dmmptss 5369 . . . 4  |-  dom  SubGrpOp  C_  GrpOp
18 elfvdm 5760 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  dom 
SubGrpOp )
1917, 18sseldi 3348 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
2019pm4.71ri 616 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  (
SubGrpOp `  G ) ) )
21 3anass 941 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  H  C_  G
)  <->  ( G  e. 
GrpOp  /\  ( H  e. 
GrpOp  /\  H  C_  G
) ) )
2216, 20, 213bitr4i 270 1  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   dom cdm 4881   ` cfv 5457   GrpOpcgr 21779   SubGrpOpcsubgo 21894
This theorem is referenced by:  subgores  21897  subgoid  21900  subgoinv  21901  issubgoi  21903  subgoablo  21904  ghsubgolem  21963  hhssabloi  22767  ghomfo  25107  ghomgsg  25109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fv 5465  df-subgo 21895
  Copyright terms: Public domain W3C validator