MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgo Unicode version

Theorem issubgo 20970
Description: The predicate "is a subgroup of  G." (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 12-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
issubgo  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)

Proof of Theorem issubgo
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 inss2 3390 . . . . . . 7  |-  ( GrpOp  i^i 
~P G )  C_  ~P G
2 pwexg 4194 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ~P G  e.  _V )
3 ssexg 4160 . . . . . . 7  |-  ( ( ( GrpOp  i^i  ~P G
)  C_  ~P G  /\  ~P G  e.  _V )  ->  ( GrpOp  i^i  ~P G )  e.  _V )
41, 2, 3sylancr 644 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( GrpOp  i^i 
~P G )  e. 
_V )
5 pweq 3628 . . . . . . . 8  |-  ( g  =  G  ->  ~P g  =  ~P G
)
65ineq2d 3370 . . . . . . 7  |-  ( g  =  G  ->  ( GrpOp  i^i  ~P g )  =  ( GrpOp  i^i  ~P G ) )
7 df-subgo 20969 . . . . . . 7  |-  SubGrpOp  =  ( g  e.  GrpOp  |->  ( GrpOp  i^i 
~P g ) )
86, 7fvmptg 5600 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( GrpOp  i^i  ~P G )  e.  _V )  -> 
( SubGrpOp `  G )  =  ( GrpOp  i^i  ~P G ) )
94, 8mpdan 649 . . . . 5  |-  ( G  e.  GrpOp  ->  ( SubGrpOp `  G )  =  (
GrpOp  i^i  ~P G ) )
109eleq2d 2350 . . . 4  |-  ( G  e.  GrpOp  ->  ( H  e.  ( SubGrpOp `  G )  <->  H  e.  ( GrpOp  i^i  ~P G ) ) )
11 elin 3358 . . . . 5  |-  ( H  e.  ( GrpOp  i^i  ~P G )  <->  ( H  e.  GrpOp  /\  H  e.  ~P G ) )
12 elpwg 3632 . . . . . 6  |-  ( H  e.  GrpOp  ->  ( H  e.  ~P G  <->  H  C_  G
) )
1312pm5.32i 618 . . . . 5  |-  ( ( H  e.  GrpOp  /\  H  e.  ~P G )  <->  ( H  e.  GrpOp  /\  H  C_  G
) )
1411, 13bitri 240 . . . 4  |-  ( H  e.  ( GrpOp  i^i  ~P G )  <->  ( H  e.  GrpOp  /\  H  C_  G
) )
1510, 14syl6bb 252 . . 3  |-  ( G  e.  GrpOp  ->  ( H  e.  ( SubGrpOp `  G )  <->  ( H  e.  GrpOp  /\  H  C_  G ) ) )
1615pm5.32i 618 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  ( SubGrpOp `  G )
)  <->  ( G  e. 
GrpOp  /\  ( H  e. 
GrpOp  /\  H  C_  G
) ) )
177dmmptss 5169 . . . 4  |-  dom  SubGrpOp  C_  GrpOp
18 elfvdm 5554 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  dom 
SubGrpOp )
1917, 18sseldi 3178 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
2019pm4.71ri 614 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  (
SubGrpOp `  G ) ) )
21 3anass 938 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  H  C_  G
)  <->  ( G  e. 
GrpOp  /\  ( H  e. 
GrpOp  /\  H  C_  G
) ) )
2216, 20, 213bitr4i 268 1  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   dom cdm 4689   ` cfv 5255   GrpOpcgr 20853   SubGrpOpcsubgo 20968
This theorem is referenced by:  subgores  20971  subgoid  20974  subgoinv  20975  issubgoi  20977  subgoablo  20978  ghsubgolem  21037  hhssabloi  21839  ghomfo  23998  ghomgsg  24000  rrisgrp  25338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-subgo 20969
  Copyright terms: Public domain W3C validator