Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgoilem Structured version   Unicode version

Theorem issubgoilem 21899
 Description: Lemma for issubgoi 21900. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
issubgoilem.1
Assertion
Ref Expression
issubgoilem
Distinct variable groups:   ,,   ,   ,,   ,,   ,,
Allowed substitution hint:   ()

Proof of Theorem issubgoilem
StepHypRef Expression
1 oveq1 6090 . . 3
2 oveq1 6090 . . 3
31, 2eqeq12d 2452 . 2
4 oveq2 6091 . . 3
5 oveq2 6091 . . 3
64, 5eqeq12d 2452 . 2
7 issubgoilem.1 . 2
83, 6, 7vtocl2ga 3021 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  (class class class)co 6083 This theorem is referenced by:  issubgoi  21900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086
 Copyright terms: Public domain W3C validator