MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgrpd Unicode version

Theorem issubgrpd 16224
Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s  |-  ( ph  ->  S  =  ( Is  D ) )
issubgrpd.z  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
issubgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  I ) )
issubgrpd.ss  |-  ( ph  ->  D  C_  ( Base `  I ) )
issubgrpd.zcl  |-  ( ph  ->  .0.  e.  D )
issubgrpd.acl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
issubgrpd.ncl  |-  ( (
ph  /\  x  e.  D )  ->  (
( inv g `  I ) `  x
)  e.  D )
issubgrpd.g  |-  ( ph  ->  I  e.  Grp )
Assertion
Ref Expression
issubgrpd  |-  ( ph  ->  S  e.  Grp )
Distinct variable groups:    x, y,  .0.    x, D, y    x, I, y    x,  .+ , y    ph, x, y    x, S, y

Proof of Theorem issubgrpd
StepHypRef Expression
1 issubgrpd.s . 2  |-  ( ph  ->  S  =  ( Is  D ) )
2 issubgrpd.z . . . 4  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
3 issubgrpd.p . . . 4  |-  ( ph  ->  .+  =  ( +g  `  I ) )
4 issubgrpd.ss . . . 4  |-  ( ph  ->  D  C_  ( Base `  I ) )
5 issubgrpd.zcl . . . 4  |-  ( ph  ->  .0.  e.  D )
6 issubgrpd.acl . . . 4  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
7 issubgrpd.ncl . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( inv g `  I ) `  x
)  e.  D )
8 issubgrpd.g . . . 4  |-  ( ph  ->  I  e.  Grp )
91, 2, 3, 4, 5, 6, 7, 8issubgrpd2 16223 . . 3  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
10 eqid 2412 . . . 4  |-  ( Is  D )  =  ( Is  D )
1110subggrp 14910 . . 3  |-  ( D  e.  (SubGrp `  I
)  ->  ( Is  D
)  e.  Grp )
129, 11syl 16 . 2  |-  ( ph  ->  ( Is  D )  e.  Grp )
131, 12eqeltrd 2486 1  |-  ( ph  ->  S  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3288   ` cfv 5421  (class class class)co 6048   Basecbs 13432   ↾s cress 13433   +g cplusg 13492   0gc0g 13686   Grpcgrp 14648   inv gcminusg 14649  SubGrpcsubg 14901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-0g 13690  df-mnd 14653  df-grp 14775  df-minusg 14776  df-subg 14904
  Copyright terms: Public domain W3C validator