MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgrpd2 Unicode version

Theorem issubgrpd2 16215
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s  |-  ( ph  ->  S  =  ( Is  D ) )
issubgrpd.z  |-  ( ph  ->  .0.  =  ( 0g
`  I ) )
issubgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  I ) )
issubgrpd.ss  |-  ( ph  ->  D  C_  ( Base `  I ) )
issubgrpd.zcl  |-  ( ph  ->  .0.  e.  D )
issubgrpd.acl  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
issubgrpd.ncl  |-  ( (
ph  /\  x  e.  D )  ->  (
( inv g `  I ) `  x
)  e.  D )
issubgrpd.g  |-  ( ph  ->  I  e.  Grp )
Assertion
Ref Expression
issubgrpd2  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
Distinct variable groups:    x, y,  .0.    x, D, y    x, I, y    x,  .+ , y    ph, x, y    x, S, y

Proof of Theorem issubgrpd2
StepHypRef Expression
1 issubgrpd.ss . 2  |-  ( ph  ->  D  C_  ( Base `  I ) )
2 issubgrpd.zcl . . 3  |-  ( ph  ->  .0.  e.  D )
3 ne0i 3594 . . 3  |-  (  .0. 
e.  D  ->  D  =/=  (/) )
42, 3syl 16 . 2  |-  ( ph  ->  D  =/=  (/) )
5 issubgrpd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  I ) )
65oveqd 6057 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  I
) y ) )
76ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x  .+  y )  =  ( x ( +g  `  I ) y ) )
8 issubgrpd.acl . . . . . . 7  |-  ( (
ph  /\  x  e.  D  /\  y  e.  D
)  ->  ( x  .+  y )  e.  D
)
983expa 1153 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x  .+  y )  e.  D )
107, 9eqeltrrd 2479 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  y  e.  D )  ->  (
x ( +g  `  I
) y )  e.  D )
1110ralrimiva 2749 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  A. y  e.  D  ( x
( +g  `  I ) y )  e.  D
)
12 issubgrpd.ncl . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( inv g `  I ) `  x
)  e.  D )
1311, 12jca 519 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( inv g `  I ) `  x
)  e.  D ) )
1413ralrimiva 2749 . 2  |-  ( ph  ->  A. x  e.  D  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( inv g `  I ) `  x
)  e.  D ) )
15 issubgrpd.g . . 3  |-  ( ph  ->  I  e.  Grp )
16 eqid 2404 . . . 4  |-  ( Base `  I )  =  (
Base `  I )
17 eqid 2404 . . . 4  |-  ( +g  `  I )  =  ( +g  `  I )
18 eqid 2404 . . . 4  |-  ( inv g `  I )  =  ( inv g `  I )
1916, 17, 18issubg2 14914 . . 3  |-  ( I  e.  Grp  ->  ( D  e.  (SubGrp `  I
)  <->  ( D  C_  ( Base `  I )  /\  D  =/=  (/)  /\  A. x  e.  D  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( inv g `  I ) `  x
)  e.  D ) ) ) )
2015, 19syl 16 . 2  |-  ( ph  ->  ( D  e.  (SubGrp `  I )  <->  ( D  C_  ( Base `  I
)  /\  D  =/=  (/) 
/\  A. x  e.  D  ( A. y  e.  D  ( x ( +g  `  I ) y )  e.  D  /\  (
( inv g `  I ) `  x
)  e.  D ) ) ) )
211, 4, 14, 20mpbir3and 1137 1  |-  ( ph  ->  D  e.  (SubGrp `  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666    C_ wss 3280   (/)c0 3588   ` cfv 5413  (class class class)co 6040   Basecbs 13424   ↾s cress 13425   +g cplusg 13484   0gc0g 13678   Grpcgrp 14640   inv gcminusg 14641  SubGrpcsubg 14893
This theorem is referenced by:  issubgrpd  16216  issubrngd2  16217  dsmmsubg  27077  symgsssg  27276  symgfisg  27277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-subg 14896
  Copyright terms: Public domain W3C validator