Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issubmd Unicode version

Theorem issubmd 27383
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
issubmd.b  |-  B  =  ( Base `  M
)
issubmd.p  |-  .+  =  ( +g  `  M )
issubmd.z  |-  .0.  =  ( 0g `  M )
issubmd.m  |-  ( ph  ->  M  e.  Mnd )
issubmd.cz  |-  ( ph  ->  ch )
issubmd.cp  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
issubmd.ch  |-  ( z  =  .0.  ->  ( ps 
<->  ch ) )
issubmd.th  |-  ( z  =  x  ->  ( ps 
<->  th ) )
issubmd.ta  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
issubmd.et  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
Assertion
Ref Expression
issubmd  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
Distinct variable groups:    x, y,
z, B    x, M, y    ph, x, y    ps, x, y    z,  .+    z,  .0.    ch, z    et, z    ta, z    th, z
Allowed substitution hints:    ph( z)    ps( z)    ch( x, y)    th( x, y)    ta( x, y)    et( x, y)    .+ ( x, y)    M( z)    .0. ( x, y)

Proof of Theorem issubmd
StepHypRef Expression
1 ssrab2 3258 . . 3  |-  { z  e.  B  |  ps }  C_  B
21a1i 10 . 2  |-  ( ph  ->  { z  e.  B  |  ps }  C_  B
)
3 issubmd.m . . . 4  |-  ( ph  ->  M  e.  Mnd )
4 issubmd.b . . . . 5  |-  B  =  ( Base `  M
)
5 issubmd.z . . . . 5  |-  .0.  =  ( 0g `  M )
64, 5mndidcl 14391 . . . 4  |-  ( M  e.  Mnd  ->  .0.  e.  B )
73, 6syl 15 . . 3  |-  ( ph  ->  .0.  e.  B )
8 issubmd.cz . . 3  |-  ( ph  ->  ch )
9 issubmd.ch . . . 4  |-  ( z  =  .0.  ->  ( ps 
<->  ch ) )
109elrab 2923 . . 3  |-  (  .0. 
e.  { z  e.  B  |  ps }  <->  (  .0.  e.  B  /\  ch ) )
117, 8, 10sylanbrc 645 . 2  |-  ( ph  ->  .0.  e.  { z  e.  B  |  ps } )
12 issubmd.th . . . . . 6  |-  ( z  =  x  ->  ( ps 
<->  th ) )
1312elrab 2923 . . . . 5  |-  ( x  e.  { z  e.  B  |  ps }  <->  ( x  e.  B  /\  th ) )
14 issubmd.ta . . . . . 6  |-  ( z  =  y  ->  ( ps 
<->  ta ) )
1514elrab 2923 . . . . 5  |-  ( y  e.  { z  e.  B  |  ps }  <->  ( y  e.  B  /\  ta ) )
1613, 15anbi12i 678 . . . 4  |-  ( ( x  e.  { z  e.  B  |  ps }  /\  y  e.  {
z  e.  B  |  ps } )  <->  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )
173adantr 451 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  M  e.  Mnd )
18 simprll 738 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  x  e.  B )
19 simprrl 740 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
y  e.  B )
20 issubmd.p . . . . . . 7  |-  .+  =  ( +g  `  M )
214, 20mndcl 14372 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
2217, 18, 19, 21syl3anc 1182 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  B )
23 an4 797 . . . . . 6  |-  ( ( ( x  e.  B  /\  th )  /\  (
y  e.  B  /\  ta ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )
24 issubmd.cp . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  B  /\  y  e.  B )  /\  ( th  /\  ta ) ) )  ->  et )
2523, 24sylan2b 461 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  ->  et )
26 issubmd.et . . . . . 6  |-  ( z  =  ( x  .+  y )  ->  ( ps 
<->  et ) )
2726elrab 2923 . . . . 5  |-  ( ( x  .+  y )  e.  { z  e.  B  |  ps }  <->  ( ( x  .+  y
)  e.  B  /\  et ) )
2822, 25, 27sylanbrc 645 . . . 4  |-  ( (
ph  /\  ( (
x  e.  B  /\  th )  /\  ( y  e.  B  /\  ta ) ) )  -> 
( x  .+  y
)  e.  { z  e.  B  |  ps } )
2916, 28sylan2b 461 . . 3  |-  ( (
ph  /\  ( x  e.  { z  e.  B  |  ps }  /\  y  e.  { z  e.  B  |  ps } ) )  ->  ( x  .+  y )  e.  {
z  e.  B  |  ps } )
3029ralrimivva 2635 . 2  |-  ( ph  ->  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } )
314, 5, 20issubm 14425 . . 3  |-  ( M  e.  Mnd  ->  ( { z  e.  B  |  ps }  e.  (SubMnd `  M )  <->  ( {
z  e.  B  |  ps }  C_  B  /\  .0.  e.  { z  e.  B  |  ps }  /\  A. x  e.  {
z  e.  B  |  ps } A. y  e. 
{ z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } ) ) )
323, 31syl 15 . 2  |-  ( ph  ->  ( { z  e.  B  |  ps }  e.  (SubMnd `  M )  <->  ( { z  e.  B  |  ps }  C_  B  /\  .0.  e.  { z  e.  B  |  ps }  /\  A. x  e. 
{ z  e.  B  |  ps } A. y  e.  { z  e.  B  |  ps }  ( x 
.+  y )  e. 
{ z  e.  B  |  ps } ) ) )
332, 11, 30, 32mpbir3and 1135 1  |-  ( ph  ->  { z  e.  B  |  ps }  e.  (SubMnd `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361  SubMndcsubmnd 14414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-riota 6304  df-0g 13404  df-mnd 14367  df-submnd 14416
  Copyright terms: Public domain W3C validator